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Abstract

Women used to lag behind men in college enrollment but now exceed them. We

argue that changes in non-college job prospects contributed to these trends. We first

document that routine-biased technical change disproportionately displaced non-college

occupations held by women. We next employ a shift-share instrument for the impact

of routinization to show that declining non-college job prospects for women increased

female enrollment. Results show that a one percentage point decline in the share of

routine task intensive jobs leads to a 0.6 percentage point rise in female college enroll-

ment, while the effect for male enrollment is directionally smaller and insignificant. We

next embed this instrumental variation into a dynamic model that links education and

occupation choices. The model finds that routinization decreased returns to non-college

occupations for women, leading them to shift to cognitive work and increasing their

college premium. In contrast, non-college occupations for men were less susceptible to

routinization. Altogether, our model estimates that workplace routinization accounted

for 63% of the growth in female enrollment and 23% of the change in male enrollment

between 1980 to 2000.
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“Out of high school, men are more willing than women to enter a trade. For example,
there are jobs open to become electricians, carpenters, plumbers and more...Many of
my male peers entered a career right out of high school and they are successful and
happy.”
-Laura Thomas, Quinnipiac University, “Why the Future at U.S. Colleges is Female”
(2021)

1 Introduction

In the United States, women used to lag behind men in college enrollment. As their work

outcomes improved over time, social scientists predicted that the college gender gap would

eventually close, and that men and women would attend college at roughly equivalent rates

thereafter. Women indeed closed the gap in 1970-1980, as shown in Figure 1. Contrary to

expectations, the gap then reversed: women are now attending college at increasingly higher

rates relative to men. It remains an open puzzle as to why women exceed men in college

enrollment, especially when the economic payoff appears higher for men. Men tend to work

longer hours and earn higher median salaries than women. A large literature documents

that men face greater obstacles to formal human capital investment because more of them

struggle to pay attention, stay disciplined, and persevere through school (Becker et al., 2010;

Bertrand and Pan, 2013; Goldin et al., 2006). It posits a greater supply of women prepared

for college than men.

In contrast, this paper argues that women have greater demand for a college degree than

men, given differences in job prospects with only a high school diploma (“non-college job

prospects”).1 We observe that the non-college labor market is severely polarized by gender,

in that almost all occupations are male- or female-dominated, and few are gender-equal.

From this observation emerge two stylized facts. The first is that non-college occupations

dominated by women tend to pay less than those dominated by men. The second is that

1To focus on the role of non-college job opportunities, this paper abstracts away from the myriad other
explanations that could also contribute to the college gender gap, such as the marriage market premium from
a college degree (see Ge, 2011 and Zhang, 2021) and the “motherhood wall” in more demanding occupations
(for a recent review, see Juhn and McCue, 2017).
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many female-dominated occupations disappeared from the non-college labor market between

1970 and 2000. Together, these facts suggest that outside options to college-going were worse

for women, but deteriorated even further over time. We posit that the widening disparity in

non-college job prospects contributed to the widening of the reverse college gender gap.

To assess this hypothesis, we leverage routinization – automation displacing workers in

routine tasks – as a shifter of non-college job prospects. A burgeoning literature on routine-

biased technical change has established that over time, automated devices such as answering

machines and computers increasingly substituted for human labor in performing routine

tasks, eroding demand for workers in routine-intensive occupations (Acemoglu and Autor,

2011; Autor and Dorn, 2013; Autor et al., 2003; Cortes et al., 2014; Cortes et al., 2017;

Goos et al., 2009, 2014; Jaimovich and Siu, 2012; Spitz-Oener, 2006). A few papers note

that routinization had especially severe impacts for the job prospects of women (Autor and

Wasserman, 2013; Beaudry and Lewis, 2014; Black and Spitz-Oener, 2010). We further

highlight that non-college women were the most vulnerable to displacement. In 1970, over

70% of non-college young female workers worked in occupations that ranked among the top

third of routinization susceptibility. When exploring the change in labor share from 1970 to

2000, we find that routinization lowered labor share only for non-college women, but not for

college men, non-college men, or college women.

Following Autor and Dorn (2013), we measure local susceptibility to routinization using

routine task intensive (RTI) share, the share of occupations that involve many routine tasks

relative to other tasks. We use instrumental variation in routinization to overcome two

challenges with causal inference. One is that RTI share in a local labor market could depend

on the share of college and non-college workers, leading to reverse causation. Another is that

both RTI share and college enrollment rates could be correlated with unobserved factors,

such as social norms regarding women’s education, the ease of graduating high school, or

opportunities to finance a college education. Both sources of endogeneity would bias our

estimates of how routine non-college work opportunities impact college enrollment decisions.
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Our instrument predicts a local labor market’s routinizability using job posting data on

administrative activity. The intuition is that labor markets with industries intensive in ad-

ministrative activity possess more routine-intensive work. Time-series variation stems from

within-occupation changes at the national level, which should not depend on changes in any

particular commuting zone. Cross-sectional variation stems from 1950 industry composition,

which pre-dates labor market and educational changes that occur during our analysis period

of 1960-2000. Our identifying assumption is that within-occupation changes in administra-

tive activity at the national level should only influence college enrollment in a commuting

zone in ways reflected by changes in RTI share. We test these identifying assumptions in

robustness checks, which verify that our results are not driven by other changes to the share

of non-college workers or local shocks to markets from which the job postings originated.

We also validate our results using alternative instruments, which exploit different sources of

identifying variation to predict vulnerability to routinization.

Our first set of results comes from the two stage least squares (2SLS) regressions. The

first stage regressions indicate that labor markets with higher levels of routine work in 1950

experienced greater declines in administrative activity in 1960-2000 as routine-intensive in-

dustries underwent automation. The second stage results demonstrate that declines in RTI

share led to increased college enrollment among young women. We find that a 1 percent-

age point decline in RTI share corresponds to a 0.58-0.61 percentage point rise in female

enrollment. Equivalently, moving from a commuting zone in the 75th percentile of RTI

share to one in the 25th percentile in 1970 (a decline of 5.51 percentage points) leads to

a 3.20-3.36 percentage point rise in the proportion of women attending college. For men,

who experienced less displacement in their non-college job prospects, coefficient estimates

are directionally smaller and not systematically significant. We thus use routinization to

establish that the deteriorating availability of non-college jobs increased college enrollment.

Women’s non-college jobs declined more over this period, corresponding to faster growth in

female college enrollment relative to male enrollment.
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To investigate the mechanism behind our 2SLS results, we develop a two-period Roy

model with unobserved skill heterogeneity. In the model, forward-looking individuals choose

their education level in the first period and their occupation in the second period. We allow

men and women to have heterogeneous endowments in cognitive, manual, and administrative

skills, which are measured by the Armed Services Vocational Aptitude Battery (ASVAB)

from the National Longitudinal Survey of Youth 1979 (NLSY79). We estimate the model

using maximum likelihood.

Our model allows skill prices to vary across genders and occupations. Gender differences

in skill endowments and skill prices create different comparative advantages for men and

women, leading to gender polarization among non-college occupations. In the presence of

this polarization, changes in skill price due to routinization would have uneven impacts on

the occupational returns of men versus women. To capture this gender asymmetric effect,

we specify skill prices to be functions of predicted RTI share generated from the first stage

of our 2SLS approach. The structural model allows us to posit an explicit mechanism for the

second stage relationship between predicted RTI share and enrollment, rather than assuming

an ad hoc linear mapping as in most analyses using instrumental variables. By allowing

individuals to have heterogeneous responses to local RTI share, our model generates more

precise quantitative predictions compared with a simple back-of-the-envelope calculation

based on our 2SLS estimates.

Our model then explains the tight connection between the gender polarization of the

non-college labor market and the reversal of the college gender gap. Men are more likely to

sort into manual occupations given their higher mechanical skill, and women are more likely

to sort into administrative occupations given their higher administrative skill. Since manual

occupations pay more relative to administrative occupations, men enjoy a comparative ad-

vantage in non-college work overall. Women’s comparative disadvantage, on the other hand,

led them into administrative occupations that were more susceptible to displacement over

time. As the labor market routinized, the price of administrative skill declined, impacting
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occupations predominantly held by non-college women. Skill returns for non-college men

experienced smaller changes, since the occupations they held were harder to routinize. Con-

sequently, routinization increased female college enrollment but had little impact on male

college enrollment. Simulations from our model demonstrate that, as routine tasks became

automated, the change in occupational returns would increase female enrollment by 6.0 per-

centage points and male enrollment by 0.6 percentage points. This accounts for 63.2% of the

change in college enrollment for women, but only 23.1% of the change in college enrollment

for men.

Contributions to the literature. To our knowledge, this is the first paper that uses

automation as a source of variation to explain how the non-college labor market shaped the

college gender gap over time. We use a new instrument to exploit the impact of automation

on the demand for non-college workers in routine-intensive jobs. Prior work on the impact of

labor market returns on the college gender gap has mostly relied on cross-sectional compar-

isons (Charles and Luoh, 2003; Dougherty, 2005; Jacob, 2002), occupational choice models

(Olivieri, 2014), or general equilibrium models (Huang, 2014; Rendall, 2017). Relative to

these approaches, our paper better accounts for potential sources of endogeneity, such as

supply-side factors which could influence both non-college occupation share and college en-

rollment (e.g., social norms regarding women’s work, ease of graduating high school, financial

resources for pursuing college).

Second, we contribute to the literature on routine-biased technical change by quantifying

automation’s impact on the rise of female college-going. To our knowledge, this is the first

paper to evaluate the causal impact of automation on the college gender gap. Most prior

studies focus on the gender asymmetric impact of technological change on the labor market

outcomes (Autor and Wasserman, 2013; Black and Spitz-Oener, 2010; Borghans et al., 2014;

Cortes et al., 2021; Dillender and Forsythe, 2019; Juhn et al., 2014; Ngai and Petrongolo,

2017; Olivetti and Petrongolo, 2014, 2016; Yamaguchi, 2018). Our paper demonstrates sub-
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stantial impacts on human capital acquisition, and therefore the skills that men versus women

bring to the future workforce. Specifically, we show that routinization, a gender-neutral pro-

cess, generates gender-asymmetric changes in college enrollment because of differences in

skill endowments and skill prices. Our findings illuminate the role of technological change in

shaping gender disparities in human capital over time. According to our simulation, changes

in occupational returns from routinization can explain about 63% of the growth in female

enrollment from 1980 to 2000 but only 23% of the change in male enrollment during this

time.

Third, our paper uses a model-based approach to link gender-based occupation polar-

ization with the college gender gap. Since most prior papers use job task requirements to

indirectly infer gender differences in skill levels (Duran-Franch, 2020; Ngai and Petrongolo,

2017; Olivetti and Petrongolo, 2014; Rendall, 2017; Yamaguchi, 2018), they cannot disentan-

gle skill endowments from skill returns. We overcome this limitation by separately measuring

skill endowments and task requirements, which is necessary to determine how the value of

different skills changes in response to routinization. The closest frameworks to ours are

Prada and Urzúa (2017) and Roys and Taber (2019), but our model deviates from them in

two ways. Inspired by Eisenhauer, Heckman, and Vytlacil (2015) and Heckman et al. (2018),

we introduce instrumental variation from routinization to shift skill prices. This helps us

separately identify skill prices and skill endowments, which are usually jointly determined in

a classical Roy model. Furthermore, we study both male and female workers and focus on

gender inequality as it pertains to college enrollment choices, whereas the other two papers

only analyze male workers.

The paper is organized as follows. Section 2 describes stylized facts and data. Sections

3 and 4 describe our methodology and results from the 2SLS approach. Sections 5 and 6

describe our methodology and results from the structural model approach. We conclude in

Section 7.
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2 Data and Stylized Facts

We begin this section with an overview of our data. We then discuss the descriptive evidence

that motivates our analytical approach. First, we present two stylized facts regarding the

gender disparity among non-college occupations. Second, we describe our measure of rou-

tinization, followed by descriptive evidence that links routinization with the widening gender

gap in non-college job prospects.

2.1 Data

We start our analysis with data from the U.S. decadal census for 1950-2000, which are

collected by the U.S. Census Bureau and publicly provided by the Integrated Public Use

Microdata Series (IPUMS; Ruggles et al., 2021). The census data for 1950, 1960, and 1970

include 1% of the entire U.S. population, while the census data for 1980, 1990, and 2000

include 5% of the population. Following Autor and Dorn (2013), we specify a local labor

market as a commuting zone, which captures commuting patterns for work across coun-

ties. Commuting zones are defined across the entire contiguous United States, in contrast

to other geographic constructs that are defined for only certain areas and therefore may

under-represent certain industries (e.g., metropolitan statistical areas may underrepresent

industries in rural areas such as agriculture or mining). Labor force measures, such as labor

force participation or manufacturing employment share, are constructed from workers 16-65

years old, excluding residents of institutional group quarters and unpaid family workers.2

The dependent variable is the college enrollment rate among 18-25 year olds. Individuals

are considered college enrollees if they have ever enrolled in college. Since our paper investi-

gates the decision to attend college among those prepared for college, we limit our analysis

to those with a high school diploma or GED. We focus on college enrollment rather than

college completion since our goal is to understand the impact of non-college job prospects

2Following Acemoglu and Autor (2011), we calculate labor supply weights by adjusting the sampling
weight using the number of hours worked per week and the number of weeks worked per year.
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on the choice to pursue higher education. College completion is influenced by a number of

factors other than non-college job prospects, such as financial resources or academic ability,

which complicate the task of isolating how non-college job opportunities change the demand

for a college degree.

To measure the impact of routinization, we use data from Autor and Dorn (2013). We

focus on measures of routine occupation share and routine task intensive (RTI) share at the

commuting zone level, described further in subsection 2.3.1. Our main instrumental variable

comes from job posting data from Atalay et al. (2020). We use the share of occupations high

in administrative activity, where administrative activity measures are constructed based on

job postings from The Boston Globe, The New York Times, and The Wall Street Journal

from 1950 to 2000.

Our structural model uses individual level data from the geocoded National Longitudinal

Survey of Youth 1979 Cohort (NLSY79). The NLSY79 interviews the same 12,686 respon-

dents annually from 1979-1994 and every two years from 1996 until present day. We focus

on a binary college attendance decision that equals 1 if years of education exceed 12 and 0

otherwise. We designate the individual’s occupation choice to be the modal occupation be-

tween ages 25 to 35, and the occupation’s monetary return as the individual’s average annual

earnings when she worked in this occupation. The final sample contains 8,540 individuals,

with 4,217 men and 4,323 women. We provide further details and summary statistics in

Appendix A.

Two advantages of the NLSY79 make it a good complement to the census data. First,

the NLSY79 contains information on the respondent’s county of residence at age 14 and

traces each individual up to age 35, allowing us to account for potential composition effects

due to migration. Second, the NLSY79 enables us to capture individual skill heterogeneity,

as measured by test scores. Our primary skill measures come from the Armed Services

Vocational Aptitude Battery (ASVAB), a set of tests designed by the U.S. Department of

Defense to measure a wide array of skills. These individual-level ability measures shed light
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on why men and women may have comparative advantages in different occupations, which

is key to the gender difference in the college premium.

2.2 Gender polarization among non-college occupations

Our empirical approach is motivated by two stylized facts from the census data. To describe

them, we classify occupations by gender and education. “Male-dominated” occupations

comprise of less than 30% women; “female-dominated” occupations comprise of more than

70% women; and “gender-equal” occupations comprise of 30-70% women. “Non-college

occupations” have at least 50% high school graduates, and “college occupations” comprise

of at least 50% college enrollees.

The first stylized fact is that female-dominated non-college occupations tend to earn

lower pay than do male-dominated occupations. As shown in Figure 2a, there is a “missing

quadrant” in the non-college labor market. Plenty of male-dominated occupations pay above

the median income of all workers (including college graduates), indicating that men still

have the potential to earn high pay even if they only possess a high school diploma. In

contrast, female-dominated occupations pay below the 20th percentile, indicating female

high school graduates tend not to hold the same high-paying occupations that male high

school graduates do. Table 1 lists illustrative examples from Figure 2a. Occupations such

as miner, machinist, and truck driver are over 90% male and earn between the 40th to the

80th percentile of annual earnings. Occupations that are over 90% female, such as cashier,

housekeeper, and cosmetologist, earn at or below the 10th percentile of annual earnings.

Based on this descriptive evidence, a typical male high school graduate still has the potential

for high earnings, whereas his female counterpart appears less likely to sort into occupations

with high earnings potential.

College occupations display the opposite missing quadrant, as shown in Figure 2b. There

is a dearth of low-paying occupations that are male-dominated, but plenty of low-paying

occupations that are female-dominated. The evidence in Figure 2 is consistent with an
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underlying sorting mechanism for college enrollment, where few men enter low-paying college

occupations given the availability of high-paying non-college occupations. On the other hand,

it would be expected for many women to hold low-paying college occupations if their non-

college job prospects were not particularly lucrative.3

The second stylized fact is that many female-dominated occupations disappeared from

the non-college labor market over time. Figure 3a displays how non-college occupations vary

by gender composition in 1970. Non-college occupations exhibited severe gender polariza-

tion. One third (34%) of non-college occupations were female-dominated; over half (53%)

were male-dominated; and only 13% were gender-equal. By 2000, female-dominated occu-

pations plummeted from 34% to 13%; male-dominated occupations rose even higher to 76%;

and gender-equal occupations remained low at 12%. College occupations demonstrate the

opposite trend, as shown in Figure 3b. The share of gender-equal occupations rose from

17% to 50%, while the share of male-dominated occupations dropped from 72% to 21%. The

share of female-dominated occupations rose from only 12% to 29%. The descriptive evidence

suggests that as female non-college job opportunities were declining, women were entering

college occupations that were formerly male-dominated. Over time, men and women ap-

peared more substitutable in college work, but non-college occupations remained polarized

by gender. Guided by this evidence, we designate college occupations as “white-collar”,

female-dominated non-college occupations as “pink-collar”, and male-dominated non-college

occupations as “blue-collar”.

To investigate the disappearance of female-dominated occupations from the non-college

labor market, we note that female-dominated occupations tended to be intensive in routine

tasks. Pink-collar occupations such as secretary, clerical worker, stenographer, or typist

involved a great deal of repetitive tasks, such as filling out administrative forms or typing

strings of letters, which were easy to codify using automated devices. The most routine-

intensive occupations exhibited the largest decline in labor share. For example, from 1970

3In Section 5, we will show this sorting mechanism can arise naturally given different comparative advan-
tages to non-college work for men versus women.
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to 2000, the share of secretaries declined by 66% and the share of typists declined by 95% in

the census data. We next examine the role of routinization, defined as automation displacing

workers in routine tasks, on non-college job prospects over time.

2.3 Routinization and occupational composition

2.3.1 Measuring routinization

To show how the non-college labor market contributes to the college gender gap, we use

plausibly exogenous changes in job opportunities that stem from automation. The main

challenge is measurement, because automation is a gradual, continuous process that has

existed since the dawn of the modern labor market, taking on forms that are often unknown,

unrecorded, or unquantifiable.4 Instead of investigating all forms of automation and their

impacts on education, we narrowly focus on the role of automation in the routinization of

occupations during 1960-2000.

We follow Autor and Dorn (2013) in using an occupation’s “routine task intensity” (RTI)

to measure its vulnerability to routinization. The RTI of occupation k is calculated using

the logged index of its routine, manual, and abstract tasks:

RTIk = ln(routinek)− ln(manualk)− ln(abstractk)

The RTI measure captures an occupation’s routine content net of its manual and abstract

content. “Routine,” “manual,” and “abstract” task content are compiled from census data

and the Dictionary of Occupational Titles. “Routine” tasks are defined as codifiable tasks

that can be executed following an explicit set of rules. As technology progressed, automating

4Indeed, automation could affect college-going through other channels that are beyond the scope of this
paper. Work on the emergence of robots since the 1990s shows that roboticization substituted for manually
intensive work, disproportionately affecting the job prospects of men (Acemoglu et al., 2020; Acemoglu and
Restrepo, 2019, 2020). Greenwood et al. (2005) posit that the impact of technological progress on household
productivity is an important factor behind the increase in female labor force participation during the 20th
century. Automation may also have direct effects on the education decision (e.g., computers facilitating
learning and increasing college preparedness among students).
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devices replaced human labor in executing routine tasks, decreasing employer demand for

workers who specialize in these tasks. Examples include electric typewriters and carbon

paper obviating the need for clerical workers to fill out forms one by one using pen and

paper (Decker, 2016). “Manual” tasks are defined as tasks requiring in-person execution,

which tend to be physical or service-oriented tasks. Routinizability declines with manual

job content, which involves the handling of objects across space, such as lifting materials or

moving one’s body around. It was challenging to program the devices available in 1960-2000

to perform such tasks, since navigating space in environments with other moving objects

makes each task unique and hard to codify. For example, it was difficult to program a

machine to wait tables at a restaurant, a highly manual task which requires navigating around

furniture and other moving bodies in unpredictable situations. Such technology only emerged

after the 1990s (Acemoglu and Restrepo, 2020). Lastly, “abstract” tasks involve complex

mental processes that are not easily programmable, such as problem solving, management,

and complex communication. If two occupations have the same routine and manual job

content, the one with greater abstract content would have lower predicted routinizability,

since the execution of routine tasks would occur in conjunction with cognitively demanding

tasks that could not be completed using automated devices. Prior work has also found that

automation directly substituted for routine tasks while complementing abstract and manual

tasks.5

To measure the impact of routinization at the commuting zone level, we construct the

labor share of high RTI occupations (“RTI share”):

RTI sharect =

∑K
k=1 1(RTIk > RTIP66)Lckt∑L

k=1 Lckt

The term Lckt is the total number of workers 16-64 years of age in commuting zone c,

5Brynjolfsson and Hitt (2000) and Bresnahan et al. (2002) demonstrate that computers and routine tasks
functioned as substitutes in production. On the other hand, by increasing the marginal productivity of
abstract tasks, computers and similar automating devices raised labor demand for workers with abstract
skills (Autor et al., 2003; Bresnahan et al., 2002; Brynjolfsson and Hitt, 2000; Spitz-Oener, 2006).
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occupation k, and year t. Occupation k is designated high routine task intensity (“high

RTI”) if it exceeds the 66th percentile of routine task intensity for all occupations in 1980:

RTIk > RTIP66.

2.3.2 The link between routinization, job polarization, and college enrollment

Prior work shows that the routine content of jobs declined over time because automation

substituted for human labor in executing routine tasks (see Autor and Dorn, 2013; Goos et

al., 2009). We find that among youth, whose college-going would be most directly impacted

by job prospects, these changes are borne by women. Figure 4 panel A graphs standardized

routine task intensity (RTI) across all jobs held by 18-30 year old men and women. While

the RTI of women’s jobs was consistently higher than men’s, it declined substantially from

over 0.4 standard deviations in 1970 to 0.2 standard deviations by 2000. In contrast, the

RTI of men’s jobs held relatively steady at -0.2 standard deviations in 1970-2000.

Since RTI comprises three dimensions of task content (routine, abstract, and manual), we

further investigate which one(s) drive gender differences in trends over time. Figure 4 panels

B and C shows that average routine content is the only task content measure to exhibit

stark gender differences. Manual task content for men and women stayed constant during

this period, while abstract task content grew by similar rates for both men and women’s jobs.

Similarly, Appendix Table A.4 shows that the raw correlation between female non-college

work and routine task content was 18 times higher in 1970 than in 2000.

We then examine the types of jobs affected, by exploring the labor share of occupations

based on routinizability. Panel A of Figure 5 graphs occupations by high and low RTI

(top and bottom third, respectively). Consistent with prior literature documenting the

vulnerability of routine occupations to automation, we find a decline in the labor share of

high-RTI occupations but not low-RTI occupations. Among youth 18-30 years of age, the

share of high-RTI occupations peaked at 40.0% in 1970 before declining to 33.9% by 2000.

The share of low-RTI occupations, in contrast, rose from 28.9% to 36.5% over this time
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period.

Panel B breaks this down by gender. Among young women, the share of high-RTI

occupations peaked at 55.8% in 1970 and then plummeted by over 10 percentage points to

44.1% by 2000. The share of low-RTI occupations, on the other hand, grew from 22.5% in

1970 to 32.3% in 2000. The differential time trends for high-RTI (routinizable) compared

to low-RTI (non-routinizable) occupations suggest that automation displaced certain jobs

held by women. Remarkably, these divergent trajectories are not observed for men. Among

young men, the labor shares of high- and low-RTI jobs follow parallel trajectories: both grew

about 3-5 percentage points from 1980 to 2000. Automation’s displacement of high-RTI jobs

appears to have largely affected the jobs held by young women, without noticeably affecting

the aggregate labor share of young men.

The natural next question is whether this affected the college-going margin for women.

Panel C of Figure 5 depicts labor share by RTI and educational status among all 18-30 year

old women. For non-college women, there are stark differences in how labor share changed

over time in high- versus low-RTI jobs. First, the share of young women who work in non-

college low-RTI jobs is tiny and constant at 5.4-7.3% over the entire time period. The share

in non-college high-RTI occupations in 1970 is far higher at 31.8% of all working women 18-

30 years old. From 1970 on, however, the labor share plummeted from 31.8% to 14.1%. The

decline by over half mirrors the decline in high-RTI labor share among all women in panel B,

suggesting that automation’s impact on women’s jobs was concentrated in non-college jobs.

Indeed, high-RTI college jobs did not appear to experience this same displacement. Panel

C shows that for college women, the labor share of both high- and low-RTI jobs followed

parallel trajectories, increasing by 10-12 percentage points from 1970 to 2000.

Together, Figures 4-5 indicate that the displacing impact of automation coincided with

a decline in the routinizable jobs held by non-college women, but not college women, non-

college men, or college men. The evidence suggests that the non-college occupations tra-

ditionally held by women were most vulnerable to displacement, lowering women’s outside
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options to college-going. On the other hand, men’s outside options were less vulnerable,

making their college enrollment decisions less dependent on the labor market impacts of

routinization. The descriptive evidence suggests that automation encouraged the growth

of female enrollment through displacing women’s non-college jobs. In the next section, we

discuss our methodology to assess the causal impact of routinization on college enrollment.

3 Two Stage Least Squares Approach

Before presenting the two stage least squares (2SLS) results, we first report the ordinary least

squares (OLS) results of college enrollment regressed on the RTI share of non-college workers

in Table 2. Across multiple specifications, we find that the relationship between RTI share

and college enrollment is negative for both men and women. However, the OLS estimates

do not necessarily isolate the causal impact of RTI share on college enrollment, since other

explanations could contribute to our estimates. For example, if high school graduation rates

rose and more students were prepared to enter college, the share of non-college jobs would

mechanically decrease. We therefore turn to a 2SLS approach to isolate plausibly exogenous

variation in RTI share arising from routinization.

Our strategy involves isolating declines in employer demand for non-college workers using

routinization. Our primary instrument predicts routinizability using the share of occupations

that involve administrative support and clerical work.6 We calculate this “administrative

share” using data from newspaper job postings. Atalay et al. (2020) extract information

about occupational characteristics from job postings that appeared in the Boston Globe, the

New York Times, and the Wall Street Journal in 1940-2000. Using their data, we construct

an instrument based on the frequency with which job postings mentioned administrative

activity, as measured by the occurrence of keywords such as “administrative,” “paperwork,”

“filing,” and “typing” for each decade from 1950 to 2000. We predict routinizability at the

6Following the literature on skill-biased technical change, we treat administrative tasks as synonymous
with clerical tasks, as opposed to managerial tasks (see Atalay et al., 2020; Autor et al., 2003).
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commuting zone level by interacting the administrative activity measure with the commuting

zone’s 1950 industry share:

routinizabilityct =
I∑
i=1

Ei,c,1950

∑
k∈i Lkt1(admink > adminP66)∑

k∈i Lkt

where i indexes industry, k indexes occupation, t indexes year, and c indexes commuting

zone. The variable Lkt represents the number of workers in occupation k in year t, while

Ei,c,1950 represents the share of industry i in commuting zone c in 1950. The indicator

1(admink > adminP66) equals 1 if occupation k is in the top third of administrative activity

in 1980.7

Time-series variation is derived from within-occupation changes in administrative activ-

ity. Figure 6 shows a large dropoff in the share of highly administrative occupations from

1950 to 2000 for all major occupation categories, which is to be expected if automation

decreased the need for employers to hire workers for routine tasks. The fall was especially

severe for office-related occupations, as activities like typing another’s handwritten notes

declined with the advent of word processing software which allowed cognitive workers to

type as they thought (Atalay et al., 2020). Among the remaining occupation groups, the

decline in administrative activity over time was also pronounced among management-related

occupations.

To predict routinizability at the commuting zone level, we fix industry shares in 1950

and interact them with the administrative share within each industry. The intuition behind

the instrument is that commuting zones with high shares of routinizable industries should

have experienced greater declines in administrative activity as these industries automated

over time. In Appendix Figure A.1, we correlate our instrument with personal computer

adoption to confirm that commuting zones with steeper declines in administrative activity

did in fact experience more intensive automation in 1980-1990.

7Following Autor and Dorn (2013), we peg our measure of “high administrative activity” to the 1980
distribution to ensure that our definition of routinizability is constant over time.
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With this routinizability IV, we then perform the following two stage least squares regres-

sion. The first stage regression captures the relationship between RTI share and predicted

routinizability within commuting zone c and year t:

RTI sharect = α0 + α1routinizabilityct + α2Wct + θc + φt + uct (1)

We control for commuting zone-year level controls Wct, commuting zone dummies, and year

dummies. The matrix of control variables Wct includes the proportion of female, Black,

and Hispanic residents. It also includes the proportion of people by 10-year age bin. We

control for census division and year. For reasons described below, we control for labor force

participation, manual share, and the 10-year lagged share of the service sector and major

industries: manufacturing, retail, and mining. In some specifications, we control for the

10-year lag of RTI share and for the median log earnings of abstract-intensive work.

Our premise is that 18-25 year olds make their college-going decisions based on the job

prospects of others. If younger women observe deteriorating job prospects for older women

without a college degree, their beliefs about the returns to non-college occupations should

correspondingly worsen. We therefore exclude 18-25 year olds in our measure of RTI share.

The variable RTI share represents the share of workers in routine task intensive occupations

among all workers between the ages of 25 to 65. Furthermore, if enrollment among 18-25

year olds rose for other reasons during this time (e.g., the rise in social norms favoring

college attendance), fewer workers would take routine task intensive jobs, and RTI share

would mechanically decline. This would overstate the true impact of RTI share on college

enrollment. By excluding 18-25 year olds in our measure of RTI share, we address this

potential source of endogeneity. Our preferred specification focuses on RTI share among

only non-college occupations, but in robustness checks we use RTI share among both college

and non-college workers.8

8To directly measure outside options to college-going, our preferred specification focuses on high-RTI
non-college jobs as a share of all non-college jobs. However, this measure depends on the number of high
school graduates, which is endogenous to supply-side considerations such as social norms regarding education
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The second stage regression then uses the first stage linear prediction ̂RTI sharect to

isolate the impact on college enrollment in commuting zone c, year t for gender g:

college enrollmentgct = β0 + β1
̂RTI sharect + β2Wct + θc + φt + εgct (2)

As with the first stage regression in Equation 1, the second stage regression controls for

commuting zone-year characteristics Wct, commuting zone dummies, and year dummies.

Note that while the reduced form and second stage effects on enrollment are gender-specific,

we pool gender in estimating the first stage effect. This avoids the assumption that men and

women operate in isolated markets and allows for correlation between how the instruments

impact the RTI share for men and women.

Under the frameworks of Adao et al. (2019) and Borusyak et al. (2018), the shift-share

approach is equivalent to a weighted instrumental variable regression in which industry-level

shocks are the instrument and industry shares are the weights. The exclusion restriction is

therefore that the administrative share at the national industry level can only affect college

enrollment in ways reflected by the RTI share at the commuting zone level. This restriction

is met if no commuting zone plays a large role in determining administrative share in an

industry. Since our job posting data come from newspapers located in New York City and

Boston, in robustness checks we exclude the commuting zones containing these cities to

determine whether our 2SLS results are driven by local omitted variables correlated with

both college enrollment and administrative work.9

The general threat to the exclusion restriction is that industry-level changes in routine

activity, measured by administrative occupation share, could be correlated with enrollment

in ways not captured by commuting zone-level changes in RTI share. Using commuting zone

dummies accounts for time-invariant omitted factors, but not changes across time correlated

or the ease of progressing through high school. In Section 4.1, we apply our 2SLS specification to the RTI
share among both college and non-college workers, which depends less on such considerations.

9We also use an alternate instrument with a leave-one-out specification, which nets out local labor market
shocks that may be correlated with contemporaneous employment and education.
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with both enrollment and labor market prospects. Below, we discuss plausible time-varying

confounders that could generate the gender differences in college-going we report in Section

4. These confounders motivate the inclusion of certain controls into the Wct matrix.

One possibility is that non-automation factors could drive industry level changes corre-

lated with both enrollment and routine share in a commuting zone. For instance, the decline

in manufacturing over this period could change both college enrollment and the proportion

of routine occupations within an industry (see Autor et al., 2013). We therefore include

in Wct lagged shares of the largest industries: manufacturing, mining, and retail trade.10

We also control for lagged service sector shares, given the Autor and Dorn (2013) finding

that automation raised service sector employment. Using the lagged shares is preferable to

current shares, since they better net out the effect of contemporaneous omitted variables

related to both industry share and college enrollment.11

Supply-side factors could influence enrollment in ways correlated with the instrument.

For example, high female labor force participation in a commuting zone may raise the share

of industries that employ female high school graduates in 1950. More non-college jobs may

be available women in this commuting zone than in others, which would then increase their

outside options to college-going, leading to lower growth in female enrollment in 1960-2000.

We therefore control for both female and male labor force participation among 25-65 year

olds. Since 25-65 year olds are typically beyond college age, their labor force participation

should not directly depend on the college enrollment of 18-25 year olds.12

Related concerns are serial correlation in RTI share, as well as persistence in other un-

observable factors that could influence women’s labor market prospects. For instance, com-

10A trade-off exists between controlling for some industries versus all industries. Our identification relies
on industry-level shocks, so controlling for all industries would lead the industry dummies to absorb valuable
identifying variation. We therefore only control for major industries that compose a large share of the overall
labor force.

11Excluding lagged industry and service sector shares does not change our point estimates (results available
upon request). This is consistent with the rationale behind our two stage least squares approach, which is
designed to isolate the variation in RTI share arising from time-series changes in administrative share that
do not depend on industry composition in any commuting zone.

12As with lagged industry and service sector shares, specifications that do not control for labor force
participation do not appreciably change our estimates.
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muting zones with a greater number of routine jobs in 1950 may have more favorable social

norms regarding women’s schooling in 1960-2000. We control for lagged RTI share to cap-

ture the effects of these and related social norms. Finally, as mentioned above, routinization

changed both the returns to non-college work and college work. To separate the pull factor

of rising college earnings from the push factor of declining non-college job opportunities, we

control for median earnings in abstract-intensive occupations.

We use the standard error correction procedure of Adao et al. (AKM, 2019). AKM (2019)

demonstrate that shift-share instruments introduce correlation across labor markets with

similar industry shares, and that clustering standard errors at the local labor market level is

insufficient to account for such correlation. To report the results of our weak instrument tests,

we calculate Montiel Olea-Pflueger F-statistics, which are preferable to Kleibergen-Paap F-

statistics in assessing instrument strength (Andrews et al., 2018; Andrews and Stock, 2018;

Olea and Pflueger, 2013).13 In addition, we report Anderson-Rubin weak instrument-robust

confidence intervals.

4 Two Stage Least Squares Results

We begin by investigating the first stage relationship between the instruments and RTI

share, presented in Table 3. As discussed in Section 3, we use various sets of controls to

account for potential confounds. Column (1) controls for demographic characteristics at the

commuting zone level, male and female labor force participation, the ten-year lagged service

sector share, and the ten-year lagged shares of the industries with the highest labor shares

in our data: manufacturing, retail, and mining. Adding on to these controls, columns (2)

and (4) include the median annual log earnings of occupations in the top third of abstract

intensity. Columns (3) and (4) include the ten-year lag of RTI share.

13The Kleibergen Paap F-statistic cannot formally test for weak instruments when errors are heterskedas-
tic, serially correlated, or clustered (Pflueger and Wang, 2015). Another limitation is that the Kleibergen-
Paap and Cragg-Donaldson F-statistics may be high even under weak instruments (Lee and Wolpin, 2006;
Olea and Pflueger, 2013).
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We find that commuting zones with greater predicted routinizability experienced greater

declines in RTI share over time. On average, a commuting zone with a 1 percentage point

higher share of administrative industries in 1950 experienced a 0.38-0.39 percentage point

greater decline in RTI share in 1960-2000 (p < 0.01). The first stage correlation is negative

because the instrument primarily exploits time-series variation. In 1950, commuting zones

with higher shares of administrative industries also had higher RTI shares, since routine-

intensive occupations involved a great deal of administrative tasks. These commuting zones

experienced larger declines in RTI share as administrative industries automated over time.

Coefficient estimates remain constant even when we control for median earnings in

abstract-intensive work in columns (2) and (4), suggesting that the decline in RTI share

is driven by declining routine task demand rather than growing returns to abstract-intensive

work. Similarly, our estimates do not change when we control for lagged RTI share in

columns (3) and (4), indicating that serial correlation in unobservables is unlikely to ex-

plain these relationships. Across all specifications, Montiel Olea-Pflueger F-statistics hover

at 41.44-49.93, indicating that the Nagar bias from the first stage regression is below 5% of

the worst case benchmark.14

To assess fit, we plot the first stage linear prediction against the raw data in Figure 7.

The raw data exhibit a clear negative relationship between RTI share and administrative

share, corroborating the first stage regression results in Table 3. Both the raw data and

the first stage predictions suggest that local labor markets with high levels of administrative

activity in 1950 experienced greater routinization in later years, leading to sharper declines

in RTI share.

Next, Table 4 reports the reduced form results for female enrollment (panel A) and male

enrollment (panel B). Across all regressions, we find greater female enrollment rates among

commuting zones with higher instrument values. This finding is consistent with the premise

14The Nagar bias is the approximate asymptotic bias under weak instruments. The Montiel-Pflueger F-
statistics enable us to test whether this bias exceeds a certain fraction of the “worst case” benchmark, where
the instruments are uninformative and when the first- and second-stage errors are perfectly correlated (Olea
and Pflueger, 2013; Pflueger and Wang, 2015).
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that women’s non-college job opportunities diminished in labor markets more vulnerable to

routinization. Commuting zones with a 1 percentage point higher share of administrative

activity in 1950 exhibit on average a 0.22-0.23 percentage point rise in female enrollment

(p < 0.01). The coefficient for men is about 75% of the estimate for women and marginally

significant at 0.17 percentage points (p < 0.10).

We next turn to the two stage least squares results in panels C-D of Table 4. By iso-

lating changes in RTI share from the routinizability instrument, we aim to capture declines

in employer demand for routine-intensive occupations. This then translates into fewer op-

portunities for high school graduates, which should increase the college premium for those

who would have otherwise held routine-intensive occupations. Consistent with this story,

panel C demonstrates that commuting zones that undergo more routinization experience

higher female enrollment. Our estimates indicate that a 1 percentage point decline in RTI

share leads to a 0.58-0.61 percentage point rise in the proportion of 18-25 year old women

enrolled in college (p < 0.01). Panel D shows that the corresponding estimate for male

enrollment is 0.44 percentage points, which is only marginally significant (p < 0.10). Over-

all, panels C and D indicate that moving from the 75th percentile to the 25th percentile

of RTI share, about a 5.51 percentage point decline, increases the female enrollment rate

by 3.18-3.33 percentage points and the male enrollment rate by 2.40-2.44 percentage points.

We also estimate Anderson-Rubin weak instrument-robust 90% confidence intervals around

our coefficient estimate, which exclude 0 for female enrollment but cannot reject the null

hypothesis of no effect for male enrollment. The results establish a consistently significant

negative relationship for women, but not for men.

Comparing across specifications, we find that including median earnings for cognitive

occupations does not change our estimates. This is consistent with the evidence in Figure 4

that abstract task content changed at similar rates for both men and women, and therefore

cannot explain the gender differential in college enrollment trends. Adding lagged routine

share also does not change point estimates across specifications, indicating that persistence
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in occupational composition across time within commuting zones is unlikely to drive our

results.

Overall, we find consistently negative impacts of RTI share on female enrollment, while

any impacts on male enrollment are marginal at best. It is possible that the erosion of routine

jobs also impacted male college-going. After all, some men worked in occupations that were

vulnerable to automation. In addition to the few men who worked in secretarial and clerical

occupations, high-RTI occupations that were dominated by men include shipping clerks,

meter readers, security guards, machinists, and machinery repairers. Yet, even if men and

women had equivalent responses to changes in RTI share, far more women worked in high-

RTI jobs than men (around 70% of non-college women compared to 40% of non-college men

during 1960-2000), so the aggregate change in non-college job prospects for women would

still exceed that for men. We explore the implications of these estimates on aggregate trends

in the college gender gap over time in Sections 6.

4.1 Additional specifications

We next address potential concerns regarding our main regression specification from Table

4 panels C and D.

Local shocks in Boston and New York. The content of job postings may be endogenous

to the supply of skills in the local labor market. For example, if a commuting zone has a

large share of college workers skilled in abstract tasks, employers may specify more abstract

tasks and fewer routine or manual tasks in their job postings. The advantage of our approach

is that we exploit trends in administrative activity over time in Boston and New York City,

so local shocks from other commuting zones should not directly affect our job posting data.

To ensure that local shocks in Boston and New York City are not driving our results, we

exclude the commuting zones containing these two cities. The results are shown in column

(1), Table 5. Our point estimates of -0.608 (p < 0.01) for female enrollment and -0.503
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(p < 0.10) for male enrollment are similar to our main estimates.

Changes in abstract occupation share. In our main specifications, we instrument for

the share of routine task intensive (RTI) occupations, which measure the routine content of

an occupation relative to its manual and abstract content. We control for manual content,

but allow routine and abstract content to vary freely since prior work has found that rou-

tinization coupled the decline in routine content with a rise in abstract content over time

(see Brynjolfsson and Hitt, 2000; Bresnahan et al., 2002). However, this raises the question

of whether our results are driven by deteriorating job prospects in routine-intensive occu-

pations or by improving job prospects in abstract-intensive occupations. While we already

control for abstract median earnings in Table 4, we go further by controlling for abstract

occupation share in column (2) of Table 5. This additional control places severe restrictions

on the variation we use, but better nets out the impact of non-automation forces that shift

routine and abstract content simultaneously. Despite the stringency of this assumption, es-

timates are similar to the main results, leading us to conclude that the response of female

enrollment to changes in RTI share are not driven by improving returns to abstract-intensive

occupations alone. We find point estimates of -0.628 (p < 0.01) for women in panel A and

-0.441 (p > 0.10) for men in panel B.

Changes in the number and composition of non-college workers. Our sample pe-

riod witnessed substantial growth in college enrollment due to many supply-side factors, such

as greater high school completion rates, social norms encouraging college graduation, and

more generous financing options for education. Since our main specification uses RTI share

among non-college workers, the rise in college enrollment over this period could lower the

denominator of our RTI share variable. This will lead to an underestimate of the true effect,

since the covariance between RTI share and the instrument is inversely proportional to the

second stage estimate. Furthermore, rising college enrollment may change the characteristics

of workers who choose to stop school following high school graduation, leading to changes
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in the composition of the non-college workforce. To address this concern, we use RTI share

among both non-college and college workers, which is less sensitive to college enrollment

changes. Column (3) reports our results, which do not quantitatively change from our main

estimates for men or women (although the marginally significant estimate for male enroll-

ment becomes insignificant). Comparing the two sets of results suggests that despite the

decline in non-college worker share during our sample period, our 2SLS approach appears

effective in netting out the role of supply-side changes on non-college RTI share.

The routine share instrument. Our administrative share instrument primarily exploits

time-series variation in the fall in administrative activities. We next use an alternative

instrument, modified from Autor and Dorn (2013), that exploits cross-sectional variation

across commuting zones using a leave-one-out construction. Unlike the administrative share

instrument, which predicts the fall in RTI share over time, this “routine share instrument”

directly predicts future RTI share. It isolates the “long-run, quasi-fixed component of in-

dustrial structure that determines [a] commuting zone’s. . . routine occupation share” (Autor

and Dorn, 2013; see Appendix B.1 for details on instrument construction and identifica-

tion assumptions). Despite leveraging a different source of variation from the administrative

share instrument, point estimates are close to the main results for women (panel A column

4). A 1 percentage point decline in RTI share corresponds to a 0.57 percentage point decline

in female enrollment (p < 0.01). In contrast, we find a small and insignificant estimate of

-0.267 for men (p > 0.10, panel B column 4), which is slightly lower than the estimates of

-0.436 to -0.444 in our main specification. Overall, our findings remain unchanged. Since

the variation in the routine share instrument uses a leave-one-out specification to net out

local labor market shocks and does not depend on job characteristics in any particular city,

it provides an additional check that our main results are not driven by characteristics local

to Boston or New York City.
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The administrative activities instrument and clerical requirements instrument.

Lastly, we look to alternate methods of using the job posting data to predict routinization.

In column (5), we construct the “administrative activity instrument” using the predicted

frequency of administrative activities, rather than administrative share. The units are the

number of mentions of an administrative activity per job posting, rather than the share of

occupations that require intensive amounts of administrative activity. In column (6), we

use the “clerical requirements instrument”, constructed from the number of times a clerical

knowledge requirement is specified per job posting for an occupation. With both instruments,

mentions were most frequent in office-related occupations, and declines were steepest in these

occupations as they automated over time.15 Estimated effects in specification (5) and (6)

are comparable with the effects in our baseline results, although the results in column (6)

are slightly higher than the main estimates. These comparisons indicate that our results are

not contingent on the particular structure of our administrative share instrument. Rather,

we arrive at the same results using multiple measures of routine work from the job posting

data.

Overall, the results indicate that the negative relationship between RTI share and female

enrollment is consistently significant across different forms of instrumental variation and

different model specifications. In contrast, the impact on male enrollment appears weaker.

Across all specifications in Table 5, Anderson-Rubin weak instrument robust confidence

intervals are squarely negative for women but include 0 for men. We rule out a null effect

in characterizing the relationship between routine intensive work and female college-going,

but fail to reject the null hypothesis of no relationship between routine intensive work and

male college-going. Taken together, the contrasting results for men and women align with

the fact that female enrollment grew at a faster rate than male enrollment during 1970-2000,

a period that experienced steady decline in the routine content of labor.

15However, Appendix Figure A.2 shows that the two instruments follow different trajectories over time,
since they draw on different keywords in the text of job postings. Keywords for administrative activities
include “paperwork,” “typing,” and “filing”. Keywords for clerical requirements include “clerical,” “secre-
tarial,” “typing,” “stenography,” “word processing,” or “dictaphone” (Atalay et al., 2020).
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5 Structural Model Approach

Our 2SLS approach uses a local labor market approach to argue that declines in RTI share

raised female enrollment. However, it is limited in evaluating the mechanism by which

this occurs. We next use an augmented Roy model with latent skills to delve into how

individual choices can change based on non-college job prospects. Following the dynamic

discrete choice literature (Eisenhauer, Heckman, and Mosso, 2015; Keane and Wolpin, 1997;

Roys and Taber, 2019; Todd and Zhang, 2020), we explicitly model sequential education

and occupation decisions. Our innovation is that we incorporate instrumental variation in

routinization into occupation-specific skill prices.16 By doing so, we leverage instrumental

variation to exogenously shift skill prices and identify the causal effects of routinization at

well-defined margins of the education and occupation choices. These estimates are then

used to simulate how male and female enrollment would change based only on changes in

RTI share from 1980 to 2000, enabling us to quantify the importance of routinization in

explaining why the reverse college gender gap grew so large.

The model has two periods with transitions and nodes shown in Figure 8. Individuals

are forward looking and sequentially choose their education Di in period 1 and their occu-

pation Oi in period 2. The second period starts immediately after individual i finishes their

education. In the first period, individuals choose whether to attend college based on the flow

utility of schooling and expected values from the second period. Initial skill endowments are

unobserved by the econometrician but fully observed by each individual. Following Heckman

et al. (2006) and Prada and Urzúa (2017), our model is then augmented with a set of test

scores that comprises the measurement system to identify workers’ unobserved skills. We

use θi = [θci, θmi, θai] to represent a vector of three-dimensional skill sets for individual i,

where subscripts c, m, and a are used to denote cognitive, mechanical, and administrative

skills, respectively. We allow men and women to differ in skill distributions.

16Eisenhauer, Heckman, and Vytlacil (2015) and Heckman et al. (2018) have also incorporated instruments
into discrete choice models. However, the decision rules in their models are not fully dynamic.
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We demarcate three different occupation choicesOi ∈ {White collar, Blue collar, Pink collar}.

White collar occupations (Oi = 1) refer to occupations dominated by college workers; blue

collar occupations (Oi = 2) refer to occupations dominated by the male high school grad-

uates, and pink collar occupations (Oi = 3) refer to occupations dominated by female high

school graduates. This classification is derived from the contrast between the college and

non-college labor markets shown in Figure 3, where gender polarization is severe in non-

college occupations but not in college occupations. Men and women appear to sort into

similar jobs if they have a college degree, but different jobs if they only have high school

diplomas. This classification enables our model to capture, for instance, the notion that blue

collar jobs tend to be more brawn-intensive, leading to a comparative advantage for men

due to their higher mechanical skill endowments. Lastly, we allow for home-staying as an

outside option to working (Oi = 4).

Our specification is intentionally more parsimonious than typical life-cycle dynamic dis-

crete choice models such as Keane and Wolpin (1997, 2001), Roys and Taber (2019), and

Todd and Zhang (2020). It assumes that attending college is the only binary education

choice, that occupation choices are made once and permanent, and that individuals cannot

return to school after entering the labor market. Our model is intentionally simple so as to

focus on the connection between college attendance decisions and the heterogeneous college

wage premium across different occupations. This simplicity enables us to specify an explicit

mechanism by which instrumental variation in RTI share shifts skill prices. As a result,

the model deepens our understanding of the mechanisms behind how routinization changes

college-going decisions at the individual level.

5.1 Sequential schooling and occupation choices

The model is solved through backwards induction. In the second period, individual i with

gender g ∈ {m, f} chooses an occupation depending on perceived expected values across

alternatives. Ex post, individual i who chooses occupation Oi given an education level Di
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receives utility U(Oi|Di):

U(Oi|Di) = log Y (Oi|Di) + logP (Oi|Di) + εO,D,i (3)

where Y (Oi|Di) denotes the monetary return from occupation Oi given an education level Di,

while P (Oi|Di) is the non-pecuniary utility of working in occupation Oi (e.g., job amenities,

job flexibility, potential discrimination costs). The term εO,D,i is an idiosyncratic preference

shock that follows the extreme value type I distribution.17 Earnings in occupation Oi are

expressed as

log Y (Oi|Di) = XY
i β

g
O,X +Diβ

g
O,D + θiβ

g
O,θ + θiDiβ

g
O,D,θ + ugO,i (4)

where XY
i is a vector of relevant observed variables, including cohort, region, and urban

dummies. The subscript g ∈ {m, f} denotes male and female, respectively. The college

premium comes from both Diβ
g
O,D and θiDiβ

g
O,D,θ, in which βgO,D captures the common return

to education while βgO,D,θ captures the component varying by skill level θi. Lastly, ugO,i is

the random component, realized only after occupation Oi has been chosen. Analogously, the

non-pecuniary utility P (Oi|Di) from entering occupation Oi has the following expression

logP (Oi|Di) = XY
i α

g
O,X +Diα

g
O,D + θiα

g
O,θ + θiDiα

g
O,D,θ (5)

where αgO,D represents the non-pecuniary return to education shared by all workers and αgO,D,θ

captures the extra non-pecuniary education premium that varies by worker’s skill level θ.

In the first period, individual i decides whether or not to attend college depending on

17Notice that we can only identify differences among options, as opposed to their levels. We therefore
normalize the value of the home-staying option to be 0 for identification purposes.
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the perceived value of the flow utility and expected value from the second period.

Di = 1[V 1
i + ξgD,i > V 0

i ]

V 0
i = Eε[U(Oi|Di = 0)]

V 1
i = XD

i λ
g
X + θiλ

g
θ + ρEε[U(Oi|Di = 1)]

(6)

where Di denotes a binary variable equal to 1 if the individual chooses to attend college and 0

otherwise. XD
i captures a vector of characteristics commonly believed to be relevant factors

for education choice.18 The term θiλ
g
θ captures the heterogeneous cost of attendance for

individual i with skill θi and gender g.19 The preference shock on education ξgD,i is assumed

to be orthogonal to XD
i and θi.

5.2 Incorporating routinization

One of the biggest challenges in the generalized Roy model is the identification of skill prices,

as they are endogenous outcomes jointly determined by supply and demand. Existing liter-

ature addresses this challenge by either using general equilibrium models (Lee and Wolpin,

2006) or assuming exogenous skill demand functions (Roys and Taber, 2019). Inspired by

Heckman et al. (2018), we instead use the instrument for routinization defined in Section 3

to shift job prospects, specifically occupation-specific skill prices. In particular, changes in

routinization impose different changes in skill returns based on pre-existing skill endowments,

yielding different incentives to attend college. Therefore, rather than relying on variation

across local labor markets alone, our model identifies the heterogeneous causal impact of

routinization at the individual level.

We incorporate automation by specifying the skill prices as functions of the first stage

prediction of local RTI share estimated from Equation 1. In particular, we assume that the

vector of pecuniary and non-pecuniary returns to skills to be functions of the local RTI labor

18Following Eisenhauer, Heckman, and Mosso (2015) and Prada and Urzúa (2017), XD
i includes parental

education, the number of siblings, an indicator variable for broken home, and family income at age 14.
19For identification purposes, we normalize the flow utility of not attending college to 0.
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share ̂RTI share
g

c(i),t:

βgO,θ(c, t) = βg,0Oθ + βg,1O,θ
̂RTI share

g

c(i),t

βgO,D,θ(c, t) = βg,0O,D,θ + βg,1O,D,θ
̂RTI share

g

c(i),t

αgO,θ(c, t) = αg,0O,θ + αg1O,θ
̂RTI share

g

c(i),t

αgO,D,θ(c, t) = αg,0O,D,θ + αg,1O,D,θ
̂RTI share

g

c(i),t

(7)

where ̂RTI share
g

c(i),t is the first stage predicted labor share for commuting zone c(i), year t,

gender g, which is defined in Equation 1. Therefore, {βgO,θ(c, t), β
g
O,D,θ(c, t), α

g
O,D(c, t), αgO,D,θ(c, t)}

is the skill price vector that individuals in commuting zone c would adopt when making their

education choices at period t. Substituting Equation (7) into Equations (4) and (5) demon-

strates that:

log Y (Oi|Di) = XY
i β

g
O,X +Diβ

g
O,θ + θiβ

g,0
O,θ + θiDiβ

g,0
O,D,θ

+θiβ
g,1
O,D,θ

̂RTI share
g

c(i),t + θiDiβ
g,1
O,D,θ

̂RTI share
g

c(i),t + ugO,i

logP (Oi|Di) = XY
i α

g
O,X +Diα

g
O,θ + θiα

g,0
O,θ + θiDiα

g,0
O,D,θ+

+θiα
g,1
O,D,θ

̂RTI share
g

c(i),t + θiDiα
g,1
O,D,θ

̂RTI share
g

c(i),t

Based on the above equation, returns to different occupations depend on both individual

characteristics (e.g., gender, education, and skill levels) as well as predicted RTI share in the

resident commuting zone. Therefore, even identical workers working in the same occupation

may have different returns if they live in areas with differing vulnerability to routinization.

It is worth noting that we assume that routinization must only impact college-going in

ways reflected by changes in skill prices. Our model effectively uses changes in skill price due

to routinization as sufficient statistics to capture the impact of routinization within different

occupations. This assumption is appropriate because our focus is on the impact of workplace

routinization, as opposed to all forms of automation. It allows our model to abstract away

from other forms of technological progress that have been shown to influence work outcomes
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via channels other than occupational returns.20

5.3 Structural model estimation strategy

5.3.1 Latent abilities

We use the NLSY79’s ASVAB tests to construct multi-dimensional skill profiles at the in-

dividual level. The ASVAB comprises nine subtests: arithmetic reasoning, word knowledge,

paragraph comprehension, mathematics knowledge, numerical operations, coding speed, au-

tomotive and shop information, electronics information, and mechanical comprehension. Fol-

lowing Prada and Urzúa (2017), we perform Exploratory Factor Analysis (EFA) analysis on

the NLSY79’s ASVAB tests to construct multi-dimensional skill profiles at the individual

level. The analysis suggests that two separate skills (“factors”) are necessary to explain the

variation in ASVAB scores. For both men and women, the first factor has the highest load-

ings for subtests designed to assess cognitive skill. However, there are gender differences in

factor loadings for the second factor. For men, the loadings are statistically significant only

for the three mechanical subtests: automotive and shop information, electronics information,

and mechanical comprehension. For women, loadings for the second factor are statistically

significant only for the two administrative subtests: coding speed and numerical operations.

Figure 9 displays the estimated factor loadings.

Based on our results, we characterize each individual’s skill set θi by three dimensions: the

common first factor as cognitive ability θc,i, men’s second factor as mechanical skill θm,i, and

women’s second factor as administrative skill θa,i.
21 This particular skill structure sheds light

on how men and women can have different comparative advantages in different occupations,

leading to the occupational sorting shown in Figure 2. Men tend to have higher mechanical

skill, which would give them a comparative advantage in manually intensive tasks. Women

20For example, Greenwood et al. (2005) demonstrate the role of household technologies in increasing female
labor force participation.

21Our EFA results match with Prada and Urzúa (2017) regarding the definition of mechanical skills for
men. However, the results on administrative skill for women are novel.
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tend to have higher administrative skills, which provide a comparative advantage in routine

office work. Appendix A provides more information on the EFA implementation.

Guided by the exploratory factor analysis, we specify the measurement equations for an

individual i with latent skill vector θi = [θc,i, θm,i, θa,i] as follows:

Cj,i = λcjθc,i + ecj,i, j = 1, 2, ..., 4

Mj,i = λcjθc,i + λmj θm,i + emj,i, j = 5, 6, 7

Aj,i = λcjθc,i + λajθa,i + eaj,i, j = 8, 9

(8)

where Cj,i denotes the four subtests exclusive for the cognitive ability measure, Mji denotes

the three mechanical subtests, and Aj,i denotes the two administrative subtests.22 We restrict

the loading coefficients {λcj, λmj , λaj} to be gender neutral so that any gender differences in

test scores reflect only gender differences in latent abilities. Lastly, to identify the system, we

assume that all error terms {ec1,i, ..., ec4, em5,i, em6,i, em7,i, ea8,i, ea9,i} are mutually independent and

uncorrelated with the skill vector θi.

It is worth noting that we allow latent abilities to be correlated with each other, as several

test scores are relevant for multiple abilities.23 To identify the system, we follow Carneiro

et al. (2003), Eisenhauer, Heckman, and Mosso (2015), Heckman et al. (2006), and Prada

and Urzúa (2017) and assume that at least one measure in Mj,i is exclusively driven by

mechanical skill, and one measure in Aj,i is exclusively driven by administrative skill, and

a set of standard normalizations.24 We refer the interested readers to the aforementioned

papers or Appendix B for further details on identification.

22In particular, Cj,i ∈{arithmetic reasoning, word knowledge, paragraph comprehension, mathematics
knowledge}, Mj,t ∈{automotive and shop information, electronics information, and mechanical comprehen-
sion} and Aj,i ∈{coding speed and numerical operations}.

23This assumption is consistent with recent papers that present similar empirical findings (e.g. Eisenhauer,
Heckman, and Mosso, 2015; Prada and Urzúa, 2017).

24In practice, we assume the factor loadings of cognitive skill on automotive shop information test (λc5)
and on coding speed test (λc9) are equal to 0. The loading of cognitive skill on mathematics knowledge (λc2),
the loading of mechanical skill on mathematics knowledge (λm7 ) and the loading of administrative skill on
numerical operations (λa9) are standardized to 1.
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5.3.2 The maximum likelihood function

The measurement equations are jointly estimated with the model using maximum likelihood.

Let ψ ∈ Ψ denote a vector of structural parameters and Ωi = {Xi, Ti, Oi, Yi, Di} be the

vector of observable characteristics of individual i, including exogenous control variables

Xi, a college dummy Di, occupations Oi, and annual earnings Yi. Test scores Ti include

cognitive test scores Cj,i, mechanical test scores Mj,i, and administrative test scores Aj,i.

The likelihood function for individual i is given by

`i(Ωi|ψ) =
∫
θ

Π4
j=1fj(Cj,i|θi;ψ)Π7

j=5fj(Mj,i|θi;ψ)Π9
j=8fj(Aj,i|Xi, θi;ψ)︸ ︷︷ ︸

skill measurements

(fY (Yi|Di, Oi, Xi, θi;ψ))I(Oi 6=4)︸ ︷︷ ︸
wage outcomes

Π4
k=1 (Pr(Oi|Di, Xi, θi;ψ))I(Oi=k)︸ ︷︷ ︸

occupations

Π1
l=0 (Pr(Di|Xi, θi;ψ))I(Di=l)︸ ︷︷ ︸

college

dFθ(θ;ψ)

(9)

where Pr(.) represents the probability of occupation choice Oi or education choice Di defined

in Equations 3 and 6, fj(.) is the probability density function for test j defined by Equations

8, fY (.) is the probability density function of earnings Yi in Equation 4, and Fθ(.) is the

joint cumulative distribution of the latent skill vector θ ∈ Θ. After taking the logarithm of

Equation (9) and summing across all individuals, we obtain the sample log likelihood logL:

logL =
N∑
i=1

log `i(Ωi|ψ)

Lastly, we need to impose some distributional assumptions to complete our likelihood func-

tion. In particular,

εO,D,i follows the standard Gumbel distribution while other error terms follow the normal

distribution. For latent skills, we use mixtures of normal distributions, which provides

minimal restrictions on the underlying distributions of [θc, θm, θa].
25 Following Prada and

25Ferguson (1983) argues that any probability distribution can be approximated arbitrarily well by a finite
mixture of normal densities. Therefore, this distributional assumption should provide sufficient flexibility
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Urzúa (2017), we use mixtures of two normal distributions and assume E[θc] = E[θm] =

E[s] = 0.26 After plugging the distribution assumptions into Equation (9), Pr(Oi) will be

a multinomial logit function and Pr(Di) will be a probit function. We can then obtain the

estimates ψ̂ by maximizing the total likelihood function

ψ̂ = argmaxψ

N∑
i=1

log `i(Ωi|ψ)

The standard errors are computed using the BHHH algorithm Berndt et al. (1974).

6 Structural model results

6.1 Goodness of model fit

To assess model fit, we compare simulated occupation and education choices with those from

the real data in Table 6. The upper panel shows that moments from the model simulation

are close to real data on occupational choice. The simulation replicates that the two most

common choices for men are white and blue collar occupations, while the two most common

choices for women are white and pink collar occupations. The middle panel shows that for

average log wages, simulated wages are reasonably close to actual wages. The average wage

is highest in white collar occupations and lowest in pink collar occupations, both for men

and for women. The lower panel summarizes education choices. Although our model slightly

overpredicts the overall college attendance rate, it captures the pattern that women attend

the college at a much greater rate than men. The fraction of women enrolled in college is

around 60%, while the fraction of men is around a half.

while imposing a minimal number of restrictions on the underlying distributions.
26However, we allow mean values for men and women to differ and not equal 0.
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6.2 The relationship between skills, occupational sorting, and ed-

ucation decisions

Our model estimates reveal notable gender differences in skill profiles, depicted in Figure 10.

First, Figure 10a demonstrates similar distributions of cognitive skill for men and women,

although the variance is lower for women than men.27 The similar distribution of cognitive

skills provides further evidence that men and women are substitutable in white collar work,

and can explain why the majority of college occupations had similar proportions of men and

women in 2000 (see Figure 3).

Gender differences in mechanical and administrative skills are substantial. Figure 10b

shows that the mechanical skill distribution for men is higher in mean and variance than

for women, and that mechanical skills for women appear to max out near the male mean.

In contrast, Figure 10c shows that women on average have higher administrative skills than

do men, given that the distribution for women falls to the right of the distribution for

men. These differences in mechanical and administrative skill provide a basis for the gender

polarization among non-college occupations shown in Figure 3. They also help substantiate

related research claiming that gender-based occupational segregation arose from men’s higher

mechanical skill or women’s higher administrative skill.28

Aside from the difference in skill profiles, women and men may also receive different

returns for the same skill in the same occupation. Figure 11 plots the returns to different oc-

cupations by skill quintiles for men and women (left and right panels, respectively). Blue bars

represent returns from blue-collar occupations, pink bars represent returns from pink-collar

27This result is consistent with Becker et al. (2010), who argue that the lower variance in skills among
women contributes to why more women than men are prepared to attend college. Our paper argues that
independent of any differences in the supply of students prepared for college, demand for a college degree is
also higher among women than men.

28Some studies in the literature also discuss the gender difference in social skill as one reason why men
and women sort into different occupations (Black and Spitz-Oener, 2010; Borghans et al., 2014; Ngai and
Petrongolo, 2017). Our measure of administrative skill overlaps with social skill, since administrative tasks
often involve social elements. For example, secretaries and clerical workers often closely interacted with,
planned for, and coordinated with coworkers and supervisors. Since our focus is on the routinization of
occupations, we chose to focus on administrative skill rather than social skill.
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occupations, and white bars represent returns from white-collar occupations. Comparing

the blue bars between the left and right panels reveals that men receive higher returns from

blue-collar jobs than women do, even among those with the same level of mechanical skill.

On the other hand, the pink bars show that women receive much higher rewards from pink

collar jobs than men do among those with the same level of administrative skill. Lastly,

the white bars show that average returns for white-collar jobs are similar between men and

women.29

Second, Figure 11 shows that different occupations reward different skills. Returns to

blue-collar occupations tend to increase with mechanical skill for men, possibly because

manually intense jobs such as HVAC engineer, material mover, or equipment repairer tend

to require a great degree of mechanical skill. Compensating wage differentials contribute to

the high pay of these occupations, since they are manually challenging even if not cognitively

intense. Returns to pink-collar occupations increase with administrative skill for women,

possibly because office roles such as secretary or clerical worker reward the ability to file

paperwork, coordinate others’ schedules, and quickly enter strings of letters repeatedly into

administrative forms. Returns to white-collar occupations increase with cognitive skill for

both men and women, given that they tend to be intense in abstract tasks such as problem-

solving, computation, and critical thinking.

Together, Figures 10 and 11 suggest that gender differences in skill endowments lead

to comparative advantages at different occupations. This then creates gender differences

in occupational sorting, as shown in Figure 12. Cognitive skill is positively correlated with

white-collar work for both men and women. As cognitive skill increases, men shift from blue-

collar occupations to white-collar occupations, while women shift from pink-collar occupa-

29It is unclear why returns differ between men and women who possess the same skill in the same occupa-
tion. We speculate that differences in skill returns could be due to occupational sorting. That is, controlling
for mechanical skill, returns will be greater for men than women in blue-collar jobs since more men tend
to sort into these jobs, making the non-pecuniary amenities of the job higher for men than women. For
example, blue-collar jobs such as HVAC engineer, material mover, or equipment repairer have adapted to a
majority male workforce, which may affect how comfortable women feel in these occupations regardless of
mechanical ability.
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tions and home-staying to white-collar occupations. Mechanical skill is positively correlated

with blue-collar occupations only for men. When moving up the quintiles of the mechanical

skill distribution, men increasingly sort into blue-collar occupations and out of white-collar

occupations. For women, high mechanical skill is positively associated with home-staying

and negatively associated with white-collar occupations. Lastly, administrative skill is more

relevant for women’s occupation choices than men’s. As administrative skill increases, the

share of women entering pink-collar occupations grows while the share entering white-collar

occupations declines. For men, on the other hand, administrative skill has little impact on

the likelihood of sorting into any of the four occupational choices.

We then examine the correlation between skill endowment and college attendance in

Figure 13. While cognitive skill predicts college-going for both men and women, it explains

more of the variation in men’s college-going. Women with low cognitive skill still attend

college at high rates, while comparable men exhibit low attendance rates. The disparity

is highest among individuals in the first and second quintiles of cognitive skill, where the

proportion of women who attend college far exceeds that of men. This gap declines as

cognitive skill increases, eventually flipping in favor of men for the highest quintile. The

patterns are consistent with the idea that women have worse outside options to attending

college than men. Men with low cognitive skills still have the option of entering blue-collar

work, which can pay well, especially for men with high mechanical skills. Therefore, the

compensation from attending college must be sufficiently high to warrant giving up the high

pay from a blue-collar job. In other words, college is worthwhile only for men whose cognitive

skill is sufficiently high relative to their mechanical skill. In contrast, women’s non-college

work options tend to be less lucrative, making it worthwhile to attend college even if their

cognitive ability was relatively low.

Figure 13 shows that enrollment declines with mechanical skill for both men and women,

but that this decline is steeper for men. The evidence suggests that mechanical skill presents

a sharper trade-off between college and non-college work for men than women. This in-
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terpretation is consistent with the result in Figure 11 that higher mechanical skill plays a

larger role in whether men enter blue collar work, which presents especially lucrative out-

side options to attending college. Lastly, as administrative skill increases, female enrollment

slightly declines but male enrollment does not change. High administrative skill appears to

present some trade-off between college and non-college work for women, in that returns to

pink collar work rise for women with high administrative skill. However, this trade-off is not

nearly as stark as the trade-off that mechanical skill presents for men.

The interactions between college attendance and skill endowments imply different levels

of occupational polarization in the college and non-college labor markets, shown in Figure 14.

The non-college labor market exhibits severe gender polarization. Few non-college workers

hold white collar occupations, given the complementarity between white collar occupations

and college degrees. Instead, non-college men specialize in blue collar jobs given their higher

mechanical skills, whereas non-college women specialize in pink collar jobs since they tend to

have higher administrative skills. In contrast, the college labor market exhibits less gender

polarization. Both male and female college graduates tend to hold white collar jobs due

to strong complementarities between their cognitive skills and white collar work. Together,

these results recreate the gender polarization in the raw data that motivated our study to

begin with, shown in Figure 3.

6.3 The effect of automation on occupation choice and college

enrollment

We next use our estimated model to quantitatively assess how much of the gender gap is

attributable to changes in automation between 1980 to 2000. We incorporate local variation

in predicted RTI share to assess the impact of routinization on individuals’ college-going

based on the commuting zone of residence. We then simulate the counterfactual trajectory

of occupation choices for the 1979 cohort assuming that automation was the only change

from 1980 to 2000 that impacted skill prices. All other primitive parameters, including the
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utility value for home-staying, are kept constant.30

Table 7 reports our simulated college enrollment rates between 1980 to 2000. Although

automation increased the college attendance rate for both men and women, the growth rate

for women is more substantial. Female enrollment grew from 63.2% to 69.2%, accounting for

63.2% of the observed 9.5 percentage point change between 1980 to 2000. In contrast, male

enrollment grew only slightly from 49.6% to 50.2%, accounting for 23.1% of the observed

2.6 percentage point change. At the same time, women shifted from pink- to white-collar

occupations. The share of women working in white-collar jobs increased from 40.73% to

59.2%, while the share of women working in pink-collar jobs decreased from 32.8% to 15.1%.

The simulated change in occupation shares is consistent with the empirical fact that many

female-dominated occupations disappeared from the non-college labor market over time,

highlighted in Figure 3. Lastly, our simulation predicts a slight rise in the proportion of

people who stay at home. This finding suggests that automation decreased demand for

certain workers, leading them to exit the labor force, and is consistent with Grigoli et al.

(2020), who document the negative effects of automation on labor force participation.

7 Conclusion

The college gender gap reversed in 1970-1980 when women exceeded men in college enroll-

ment. This came as a surprise to social scientists, who anticipated that male and female

enrollment rates would eventually converge. We argue that women’s greater enrollment is

partly attributable to their worse outside job options. We establish two stylized facts based

on the premise that the non-college labor market is highly polarized by gender, with most oc-

cupations being male- or female-dominated and few occupations being gender-equal. First,

non-college occupations dominated by men tend to pay better than those dominated by

women, suggesting that job opportunities may be worse for high school graduates if they are

30However, labor force participation may still evolve over time if predicted RTI share changes the difference
in utility from working versus not working.
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female. Second, this discrepancy grew over time as automation displaced routine-intensive

occupations, which employed the majority of young, working non-college women.

Informed by these stylized facts, we instrument for the share of jobs vulnerable to rou-

tinization in a local labor market. Our instrument predicts the share of occupations intensive

in administrative activity based on job posting data from major newspapers in 1950-2000.

The intuition behind our instrument is that industries with higher administrative activity

involve more routine tasks, and local labor markets with greater historic shares of these in-

dustries would experience more routinization over time. Consistent with this intuition, our

first stage regressions show that local labor markets with higher predicted administrative

shares in 1950 experienced greater declines in routine-intensive labor as workplaces auto-

mated. This decline led to significant enrollment growth among 18-25 year old women, but

effects for men are directionally smaller and not systematically significant. We estimate

that moving from a commuting zone in the 75th percentile of RTI share to one in the 25th

percentile corresponds to a 3.34 rise in female enrollment. The corresponding estimate for

male enrollment, 2.45 percentage points, is only marginally significant or insignificant.

To investigate the mechanisms that explain these results at the individual level, we de-

velop a two-period discrete choice model. The model embeds instrumental variation from

the job posting data to examine how routinization affects the value of different skills. Us-

ing a maximum likelihood procedure, we find that gender differences in skills lead men to

sort into manual-intensive work and women into routine-intensive work. The resulting gen-

der polarization among non-college occupations translates to a comparative advantage for

men in non-college work in general, given the greater pay in manual occupations relative

to administrative occupations. Over time, automation decreased the value of administra-

tive skill in routine-intensive work, lowering the opportunities for non-college women and

exacerbating their comparative disadvantage in non-college work. The model argues 1) that

women’s college premium increased relative to men’s over time and 2) that the efficient col-

lege enrollment rate for women is higher than for men given men’s comparative advantage
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in non-college work.

Given prior research showing that boys face greater struggles in school (Becker et al.,

2010; Bertrand and Pan, 2013; Cappelen et al., 2019; Goldin et al., 2006), popular media has

framed the college gender gap as a problem rooted in men’s “under-investment” in college.

Our results indicate that men’s relative “under-investment” is natural given that their job

options are plentiful and lucrative even with only a high school diploma. Similarly, women’s

relative “over-investment” is a rational response to their bleak non-college job options. Given

the gender-based sorting we document in the non-college labor market, we argue that it is

efficient for a gender gap to exist.
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Table 1: Examples of Non-College Occupations, 2010

Occupation (1990 BLS classification) % female workers Earnings percentile

Cashiers 75 4
Housekeepers, maids, and cleaners 87 7
Hairdressers and cosmetologists 91 11
Miners 3 82
Machinists 4 60
Truck, delivery, and tractor drivers 7 43

Examples of “non-college occupations”, where less than half of workers hold a college degree. Column (2) displays the proportion of workers
who are women, and column (3) displays the earnings percentile among all workers with at least a high school degree.
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Table 2: OLS Regression of College Enrollment on RTI Labor Share

College enrollment
(1) (2) (3) (4)

A. Women
RTI share -0.416 -0.448 -0.431 -0.467

(0.096)∗∗∗ (0.098)∗∗∗ (0.094)∗∗∗ (0.095)∗∗∗

Observations 3610 3610 3610 3610

B. Men
RTI share -0.215 -0.221 -0.235 -0.243

(0.120)∗ (0.122)∗ (0.128)∗ (0.130)∗

Observations 3610 3610 3610 3610

Commuting zone FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Median cognitive earnings Yes Yes
Lagged RTI share Yes

OLS regressions of enrollment on instruments at the commuting zone-year level. All regressions include demographic controls for the propor-
tion of female, Black, and Hispanic residents and by 10-year age bin. All regressions also control for U.S. census division, year, commuting
zone, labor force participation, manual occupation share, and 10-year lagged major industry shares: services, manufacturing, retail, and
mining. Columns (2), (4), (6), and (8) add median annual log earnings for occupations in the top third of abstract-intensive tasks. Columns
(3), (4), (7), and (8) additionally control for the 10-year lag of the share of high-RTI occupations. Standard errors clustered at commuting
zone level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 3: First Stage Regression of RTI Share on Instruments

RTI share
(1) (2) (3) (4)

Administrative share IV -0.387 -0.383 -0.388 -0.383
(0.060)∗∗∗ (0.056)∗∗∗ (0.059)∗∗∗ (0.054)∗∗∗

F-statistic 41.441 47.387 43.035 49.933
Observations 3610 3610 3610 3610

Commuting zone FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Median cognitive earnings Yes Yes
Lagged RTI share Yes Yes

First stage regression of RTI share on instruments. All regressions include demographic controls for the proportion of female, Black, and
Hispanic residents and by 10-year age bin. All regressions also control for U.S. census division, year, commuting zone, labor force participation,
manual occupation share, and 10-year lagged major industry shares: services, manufacturing, retail, and mining. Columns (2) and (4) add
median annual log earnings for occupations in the top third of abstract- intensive tasks. Columns (3) and (4) additionally control for the 10-
year lag of the share of high-RTI occupations. Standard errors are clustered at the two-digit industry level and adjusted using the correction
procedure of Adao et al. (2019). Olea-Pflueger F-statistics reported using AKM (2019) standard errors. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p < 0.01.

Table 4: Reduced Form and Second Stage Regressions

College enrollment
(1) (2) (3) (4)

A. Reduced form regression, women
Administrative share IV 0.224 0.232 0.224 0.232

(0.068)∗∗∗ (0.065)∗∗∗ (0.068)∗∗∗ (0.065)∗∗∗

Observations 3610 3610 3610 3610

B. Reduced form regression, men
Administrative share IV 0.169 0.170 0.169 0.170

(0.100)∗ (0.099)∗ (0.100)∗ (0.100)∗

Observations 3610 3610 3610 3610

C. Second stage regression, women
RTI share -0.578 -0.606 -0.578 -0.606

(0.202)∗∗∗ (0.186)∗∗∗ (0.201)∗∗∗ (0.184)∗∗∗

[-0.974,-0.183] [-0.970,-0.242] [-0.971,-0.185] [-0.967,-0.246]
First Stage F-statistic 41.441 47.387 43.035 49.933
Observations 3610 3610 3610 3610

D. Second stage regression, men
RTI share -0.436 -0.444 -0.436 -0.444

(0.263)∗ (0.262)∗ (0.265) (0.264)∗

[-0.952,0.080] [-0.958,0.070] [-0.955,0.084] [-0.962,0.073]
First Stage F-statistic 41.441 47.387 43.035 49.933
Observations 3610 3610 3610 3610

Commuting zone FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Median cognitive earnings Yes Yes
Lagged RTI share Yes Yes

This table presents the reduced form (panels A-B) and second stage (panels C-D) estimates. Panels A and C display the estimates
for women, while panels B and D display the estimates for men. All regressions include demographic controls for the proportion of
female, Black, and Hispanic residents and by 10-year age bin. All regressions also control for U.S. census division, year, commuting
zone, labor force participation, manual occupation share, and 10-year lagged major industry shares: services, manufacturing, retail, and
mining. Standard errors are clustered at the two-digit industry level and adjusted using the correction procedure of Adao et al. (2019).
Montiel Olea-Pflueger first stage F-statistics reported using AKM (2019) standard errors. The second stage estimates include Anderson-
Rubin (1949) weak instrument robust confidence intervals using the AKM (2019) correction procedure. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 5: Second Stage Regressions, Additional Specifications

College enrollment
(1) (2) (3) (4) (5)

A. Female enrollment

RTI share -0.607 -0.628 -0.736 -0.574 -0.548 -0.784
(0.185)∗∗∗ (0.205)∗∗∗ (0.307)∗∗ (0.184)∗∗∗ (0.184)∗∗∗ (0.184)∗∗∗

[-0.970,-0.244] [-1.030,-0.227] [-1.339,-0.134] [-0.934,-0.214] [-0.955,-0.141] [-1.310,-0.259]

B. Male enrollment

RTI share -0.503 -0.441 -0.540 -0.267 -0.432 -0.616
(0.285)∗ (0.281) (0.417) (0.263) (0.264) (0.264)∗

[-1.060,0.055] [-0.991,0.109] [-1.356,0.277] [-0.783,0.249] [-1.046,0.183] [-1.344,0.111]

Observations 3600 3610 3610 3610 3610 3610
First stage F-statistic 256.985 40.740 45.288 42.788 34.246 25.202
Excluding Boston and NYC Yes
Control for abstract occupation share Yes
RTI share: Non-college workers Yes Yes Yes Yes Yes
RTI share: College and non-college workers Yes
IV: Administrative share Yes Yes Yes
IV: Routine share Yes
IV: Administrative activities Yes
IV: Clerical requirements Yes

Two stage least squares regressions, additional specifications. All regressions include demographic controls for the proportion of female, Black, and Hispanic residents and by 10-year age bin. All
regressions also control for U.S. census division, year, commuting zone, labor force participation, manual occupation share, median cognitive earnings, lagged RTI share, and lagged major industry
shares: services, manufacturing, retail, and mining. Column (1) excludes commuting zones that contain Boston and New York City. Column (2) controls for abstract occupation share. Column (3)
uses the RTI share of all workers, instead of the RTI share of only non-college workers used in the main specification. Column (4) uses the gender-specific non-college RTI share, rather than pooling
men and women. Columns (1)-(4) use the administrative share IV, while column (5) uses the routine share IV, column (6) the administrative activities IV, and column (7) the clerical requirements
IV. Standard errors are clustered at the two-digit industry level and adjusted using the correction procedure of Adao et al. (2019). Montiel Olea-Pflueger F-statistics reported using AKM (2019)
standard errors. Anderson-Rubin (1949) confidence intervals reported using the AKM (2019) correction procedure. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 6: Goodness of Model Fit

Women Men
NLSY79 Sim NLSY79 Sim

(1) (2) (3) (4)

Occupation choices

White collar 0.409 0.407 0.369 0.384
Blue collar 0.055 0.056 0.509 0.497
Pink collar 0.337 0.328 0.059 0.050
Not working 0.199 0.209 0.064 0.069

Average log wages by occupation

White collar 1.907 1.956 2.069 2.110
Blue collar 1.631 1.622 1.779 1.801
Pink collar 1.416 1.444 1.570 1.571

Education choices

High school 0.395 0.368 0.517 0.504
College 0.605 0.632 0.483 0.496

This table compares conditional moments from the model simulation with those from the NLSY79 data. Columns (1)-(2) compare moments
for female workers and Columns (3)-(4) compare moments for male workers. The top panel displays occupation choices, the middle panel
displays log average wages, and the bottom panel displays education choices.

Table 7: Simulated Changes in Occupation and Education due to Routinization

Women Men
Year 1980 1990 2000 1980-2000 1980 1990 2000 1980-2000

(1) (2) (3) (4) (5) (6) (7) (8)

Occupation choices

White collar 0.407 0.542 0.592 0.185 0.384 0.396 0.402 0.018
Blue collar 0.056 0.063 0.064 0.008 0.497 0.489 0.485 -0.012
Pink collar 0.328 0.194 0.151 -0.177 0.050 0.050 0.050 0.000
Not working 0.209 0.201 0.193 -0.016 0.069 0.065 0.063 -0.006

Education choices

High school 0.368 0.322 0.308 -0.060 0.504 0.500 0.498 -0.006
College 0.632 0.678 0.692 0.060 0.496 0.500 0.502 0.006
This table presents simulated education and occupation choices for the NLSY79 cohort. Columns (1)-(3) report simulated choices for women
based on changes in predicted RTI share over time. Column (4) reports the difference in simulated choices for women from 1980 to 2000.
Columns (5)-(7) report simulated choices for men based on changes in predicted RTI share over time. Column (8) reports the difference in
simulated choices for men from 1980 to 2000.
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Figure 1: College Enrollment by Gender, 1950-2000

Proportion of 18-25 year olds ever enrolled in college. Solid lines represent male enrollment and dashed lines represent female

enrollment. Data from the U.S. census.

Figure 2: Occupations by Gender Composition and Percentile Median Earnings, 2000

(a) Non-College Labor Market
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(b) College Labor Market

0
.1

.2
.3

.4
.5

.6
.7

.8
.9

1
M

ed
ia

n 
Ea

rn
in

gs
 P

er
ce

nt
ile

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
% Female in Occupation

Occupations by proportion female and median annual earnings percentile in 2000. Panel A depicts occupations with 50%

or fewer college graduates in 2000. Panel B depicts occupations with 50% or more college graduates in 2000. Navy markers

indicate occupations where women comprise less than 30% of all workers, with dark navy markers representing occupations with

earnings above the 40th percentile and light navy markers representing occupations with earnings below the 40th percentile.

Maroon markers indicate occupations where women comprise 30% or more of all workers. Data from the U.S. census.
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Figure 3: Occupational Dispersion by Gender Composition

(a) Non-College Labor Market
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Distribution of occupations by proportion female in 1970 and 2000 for “non-college” occupations (A) and “college” occupations

(B). “Non-college” occupations are those with 50% or fewer college graduates, while “college” occupations are those with over

50% college graduates. The designation of occupations as “college” or “non-college” changes each year based on the education

composition of workers. Individuals aged 18-30 years old. Data from the U.S. census.
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Figure 4: Routine Task Intensity (RTI)

(a) RTI by Gender
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(b) RTI and Task Content, Women
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Data from census and American Community Survey microdata. Women aged 18-30.

Task Characteristics (Women)

(c) RTI and Task Content, Men
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Data from census and American Community Survey microdata. Men aged 18-30.

Task Characteristics (Men)

Panel A plots the routine task intensity (RTI) of men’s and women’s work over time among 18-30 year olds. RTI is then broken up into its component task content measures

in panels B (women) and C (men). All variables are standardized. Data from the U.S. census and Autor and Dorn (2013).

Figure 5: Labor Share by High versus Low Routine Task Intensity (RTI)
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Labor share by high versus low susceptibility to automation, as measured by RTI. Panel A depicts labor share by RTI among 18-30 year olds. Panel B plots the labor share by

RTI among young women (red) and the labor share by RTI among young men (blue). Panel C plots the labor share among young women by RTI and education. Data from

the U.S. census and Autor and Dorn (2013).
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Figure 6: Share of High Administrative Occupations by Major Occupation Group

Share of occupations in the top third of administrative activity for the six major occupation groups. Data from Atalay et al.

(2020).

Figure 7: First Stage Prediction between RTI Share and Administrative Share Instruments

First stage prediction. The figure depicts the residual plot of high RTI labor and predicted automation susceptibility after

partialling out the controls in Table 3, column (4). In predicting automation susceptibility, panel A uses the predicted share

of occupations with high administrative activity as the instrument. The solid line represents the correlation estimated from an

OLS regression using labor supply weights. The shaded gray area depicts 95% confidence intervals. Data from the U.S. census,

Autor and Dorn (2013), and Atalay et al. (2020).
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Figure 8: Two Period Dynamic Discrete Choice Model

Description of structural discrete choice model. In Stage 1, individuals decide whether or not to attend college. In Stage 2,

they choose their occupation from four choices: blue collar, white collar, pink collar, or home staying. The model is solved via

backward induction.

Figure 9: Factor Analysis Loadings

(a) Male (b) Female

Loadings calculated from exploratory factor analysis (quartimax rotation). The red horizontal line marks the statistically
significant threshold (see Diekhoff, 1992; Sheskin, 2004). arith = arithmetic reasoning; auto= automotive information and shop
information; code = coding speed; electr = electronics information; math = mathematics knowledge; mechan = mechanical
comprehension; numer = numerical operations; para = paragraph comprehension; word = word knowledge.
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Figure 10: Distribution of Skills by Gender
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Distribution of skills by gender. The blue distribution is for men, and the red distribution is for women. Panel (a) presents the

estimated distribution of cognitive skill, while panels (b) and (c) present analogous results for mechanical skill and administrative

skill, respectively.
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Figure 11: Occupational Returns by Skill Quintile and Gender
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We simulate each individual 200 times based on the estimates of the model to calculate average returns to each occupations

by skill quintiles and gender. Returns include both the wage return and non-pecuniary returns. The upper panels present the

effect of cognitive skill by gender, integrating out the effect of the other two dimensions of ability. The middle panel and the

lower panel present analogous results for mechanical skill and administrative skill, respectively.
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Figure 12: Occupation Choice Distribution by Skill Quintile and Gender
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We simulate each individual 200 times based on the estimates of the model to calculate the distribution of occupation choices

by skill quintiles and gender. The upper panels present the effect of cognitive skill by gender, integrating out the effect of the

other two dimensions of skills, while the middle panel and the lower panel present analogous results for mechanical skill and

administrative skill, respectively.
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Figure 13: College Attendance Rates by Skill Quintiles
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We simulate each individual 200 times based on the estimates of the model to calculate the college attendance rate by skill

quintile and gender. The vertical axis is the fraction of workers in each skill group. The upper panels present the effect of

cognitive skill, integrating out the effect of the other two dimensions of skills. The middle panel and lower panel present

analogous results for mechanical skill and administrative skill, respectively.
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Figure 14: Distribution of Occupations by Gender and Education

The distribution of occupations by gender (high school)
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We simulate each individual 200 times based on the estimates of the model to calculate the occupation distribution by gender and

education levels. The vertical axis is the fraction of workers in each occupation group. The upper panels present occupation

distribution for college-goer, with blue bars for men and red bars for women. The lower panel present present occupation

distribution for high school graduates, with blue bars for men and red bars for women.
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Online Appendix (Not for Publication)

A Data Appendix

A.1 Census microdata

Our first data sets come from the decennial census microdata from 1950 to 2000, which are
conducted by the U.S. Census Bureau and made publicly available through the Integrated
Public Use Microdata Series (IPUMS, Ruggles et al. (2021)). For enrollment, we only exam-
ine 18-25 year olds to ensure that we only detect changes in education among those closest
to college enrollment age. Following Acemoglu and Autor (2011), we restrict the sample to
full-time (at least 35 hours worked per week), full-year (at least 40 weeks worked per year)
workers.

The college enrollment variable is constructed using the harmonized EDUCD variable.
Individuals are coded as college enrollees if they report having at least some college education.
They are coded as never having enrolled in college if their highest reported level of educational
attainment was a high school diploma or equivalent. Those who did not report an education
level were excluded from the analysis.

Annual earnings data is obtained from the variable INCWAGE, the pre-tax individual
income from wages and salary. Annual earnings are only computed for workers who report
working for wages or salary. We exclude individuals who report being self-employed or an
unpaid family worker and individuals who report working no weeks in the previous year.
Annual earnings are topcoded at the pre-determined Census topcode levels, which vary from
year to year. They are bottom coded as the 1st percentile of reported earnings for each year.
All earnings are inflated to 2008 dollars.

All regressions are conducted at the commuting zone-year level. We merge the census
data to corresponding commuting zones using the crosswalks provided by Autor and Dorn
(2013). Demographic characteristics, occupations, education, earnings, and work variables
are collapsed to the commuting zone level using labor supply weights calculated following
the method of Acemoglu and Autor (2011).

Appendix Table A.1 presents summary statistics by decade from 1960 to 2000. Each
variable represents the average across commuting zones. Female enrollment increases steadily
over the decades, while male enrollment quickly rises from 1960-1970, then declines in 1980
before rising again. The proportion of women in each commuting zone stays constant at
50-51%, and the proportion of blacks also hold constant at 8% over our analysis period. The
share of Hispanics grows steadily over time, from 3% in 1960 to 8% in 2000.

A.2 Data from Autor and Dorn (2013)

To obtain information on work content, we merge the census data to the occupational task
intensity data compiled by Autor and Dorn (2013) using the OCC1990 variable, which is
harmonized across all years. Autor and Dorn (2013)’s Routine Task Intensity (RTI) measure
is the primary measure we use to determine how routine-intensive an occupation is. Following
Autor and Dorn (2013), we classify an occupation as highly routine-intensive occupation if
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its RTI measure falls in the top third of all RTI in 1980. Out of 330 total occupations, 113
occupations fit this criterion.

Our main endogenous regressor is RTI share, the proportion of jobs in a commuting
zone that are highly routine intensive. We restrict the RTI share measure to only 25-
65 year olds. If youth choose to enroll in college for reasons not captured by our data,
that would mechanically lower labor share and lead to downward bias in the estimated
relationship between labor share and college enrollment. We therefore exclude 18-25 year
olds to avoid these simultaneity concerns. In our main specifications, we focus on the RTI
share among non-college workers, since we aim to isolate the impact of routinization on non-
college employment opportunities. Appendix Table A.1 summarizes this RTI share measure,
averaged over all commuting zones. The RTI share among non-college workers rises from
1960 to 1980, from an average of 15.4% across all commuting zones to 21.5%. It falls from
1980 on, reaching 13.6% in 2000. These trends are roughly consistent with the change in
RTI share depicted in Figure 5.

We also use Autor and Dorn (2013)’s measures on the routine, manual, and abstract
task content of occupations as instruments or control variables in our two stage least squares
(2SLS) approach. We use data on routine task content to construct the routine share in-
strument, which is designed to predict RTI share in a commuting zone in a future year
based on the commuting zone’s industry composition in 1950 (see Section B.1 for details on
instrument construction). We construct predicted manual and abstract shares in the same
fashion. As discussed in Section 3, manual and abstract shares are used as control variables
in the first and second stage regressions.

A.3 Data from Atalay et al. (2020)

Three out of our four instrumental variables come from Atalay et al. (2020). To extract
occupational characteristics, Atalay et al. (2020) perform textual analysis on advertisements
for job vacancies from The Boston Globe, The New York Times, and The Wall Street Journal
from 1940 to 2000. For each occupation in each year, they characterize the work styles,
knowledge requirements, and task content desired by employers based on measures used in
the literature. They compile one set of measures to match information in the Occupational
Information Network (O*NET), which describes the activities, tasks, and skills associated
with thousands of jobs throughout the U.S. economy (see Hershbein and Kahn (2018) and
Network (n.d.-b)).

Using this set of measures, we construct our main instrumental variable, which pre-
dicts the administrative share in a commuting zone. We define administrative share as the
proportion of jobs that are in the top third of administrative activity (based on the 1980
distribution). According to O*NET, administrative activity consists of “performing day-to-
day administrative tasks such as maintaining information files and processing paperwork”
(O*NET Work Activity 4Ac1, Network, n.d.-c). Occupations that involve high amounts of
administrative activity include receptionists, information clerks, secretaries, and administra-
tive assistants. Atalay et al. (2020) compile an occupation-level measure of administrative
activity based on mentions per job posting, using keywords such as “filing,” “paperwork,”
“administrative,” and “typing”. Summary statistics in Appendix Table A.1 show that the
administrative share instrument exhibits a sizable decline over time, from 0.298 in 1960 to
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0.0775 in 2000. The trends are consistent with the substantial dropoff in administrative
share depicted in Figure 6, which is driven by office and management occupations. Based
on this descriptive evidence, we anticipate that commuting zones with high 1950 shares of
industries that involved many office and management-related occupations would experience
the largest declines in RTI share. Our first stage regression results in Table 3 are consistent
with these expectations.

We also use predicted administrative activity as a separate instrument. Rather than as a
share, this instrument is measured as the frequency of mentions per job posting. Comparing
Figure 6 with Appendix Figure A.2(a) shows that time trends differ between administrative
share and administrative activity. Administrative activity starts out highest in office occu-
pations and second highest in management occupations. However, its decline is pronounced
only for office occupations; for other occupations, administrative activity shows only mild
declines from 1950 to 2000. This stands in contrast to administrative share, which experi-
enced pronounced declines in office and management occupations but hovered at or near 0
for all other occupation groups.

Our last instrument is constructed from Atalay et al. (2020)’s data on clerical require-
ments, which corresponds to whether an occupation requires “knowledge of administrative
and clerical procedures and systems such as word processing, managing files and records,
stenography and transcription, designing forms, and other office procedures and terminology”
(O*NET Knowledge Requirement 2C1b, Network, n.d.-a). Examples of occupations high in
clerical requirements are word processors, typists, secretaries, administrative assistants, and
office clerks. Atalay et al. (2020) classify a job ad as specifying clerical requirements if it in-
cludes words such as “clerical,” “secretarial,” “stenography,” or “typing”. Appendix Figure
A.2(b) shows that variation in clerical requirements follows similar trends to the adminis-
trative activity variable, although there are some differences. Mentions per ad are most
frequent in the office, sales, and management occupations in 1950. While office occupations
experienced the most pronounced decline in clerical requirements over time, there are clear
declines in clerical requirements among the other major occupation groups, in contrast to
the more muted decline in administrative activity shown in Appendix Figure A.2(a). Both
the administrative activity and the clerical requirements instruments provide alternate ways
to predict the negative impact of routinization on labor demand for routine-intensive work.31

A.4 National Longitudinal Survey of Youth 1979

The National Longitudinal Survey of Youth 1979 (NLSY79) surveys the same 12,686 from
1979 until present day. Surveys were conducted annually until 1994, and then once every

31The data set has a few other variables related to routine work, but they do not isolate routine tasks
as cleanly as the administrative activity or clerical requirements variables. O*NET includes descriptions of
whether an occupation requires knowledge of administration and management (O*NET Knowledge Require-
ment 2C1a). It involves overseeing, managing, and coordinating with others, which are considered abstract
tasks that would make an occupation harder to automate. Atalay et al. (2020) also characterize occupations
based on the task content classification of Spitz-Oener (2006). Specifically, Spitz-Oener (2006) found that
routine cognitive tasks made an occupation more susceptible to automation, ceteris paribus. However, in
the Atalay et al. (2020) data, an occupation’s routine cognitive task content depends on ad words such as
“correcting,” “calculating,” “measuring,” “fixing,” and “rectifying,” which are quite vague and encompass a
greater variety of tasks than those that were routinized.
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two years. We restrict our sample to the 11,155 individuals who finished at least 12th grade
or hold a GED degree. We then further drop individuals who were employed but did not
have wage information between 25 to 35, leaving a sample size of 8,540. Finally, we exclude
individuals who were missing ASVAB test scores or relevant family background information.
Our final sample consists of 2,505 men and 2,490 women. Appendix Table A.3 presents
summary statistics for key variables in the model.

A.4.1 Measuring skill heterogeneity

We use the NLSY79’s Armed Services Vocational Aptitude Battery (ASVAB) test scores
to construct multi-dimensional skill profiles at the individual level. In 1981, over 90% of
NLSY79 respondents completed the ASVAB. The ASVAB is comprised of nine subtests:
arithmetic reasoning, word knowledge, paragraph comprehension, mathematics knowledge,
numerical operations, coding speed, automotive and shop information, electronics informa-
tion, and mechanical comprehension. Some of these subtests are used to construct the Armed
Forces Qualification Test (AFQT) score, a common measure of cognitive ability in the lit-
erature on skill returns.32 Rather than use AFQT directly, we take a different approach by
using exploratory factor analysis (EFA) on all nine subtests to construct multiple dimensions
of skill. This technique is frequently used to avoid ambiguity in the number of latent factors
and the underlying factor structure of a set of variables (Diekhoff, 1992).

Exploratory Factor Analysis (EFA) enables us to make use of the correlation structure in
scores among the nine ASVAB subtests when constructing our skill measures. The analysis
suggests that two separate skills (“factors”) are necessary to explain the variation in ASVAB
scores.33 Figure 9 displays the estimated factor loadings. For both men and women, the first
factor has significant loadings on all subtests. It is highest for arithmetic reasoning, word
knowledge, mathematics knowledge, and paragraph comprehension, which are designed to
measure cognitive ability and comprise the main components of the AFQT.

There are gender differences in factor loadings for the second factor. For men, load-
ings are statistically significant only for the automotive and shop information, electronics
information, and mechanical comprehension.34 The United States Department of Defense
designed these subtests to measure mechanical skill, since they evaluate the ability to solve
simple mechanics problems and understand basic mechanics principles (Welsh et al., 1990).
For women, loadings for the second factor are statistically significant only for coding speed
and numerical operations. The Department of Defense classifies these subtests into the ad-
ministrative qualification area, since they measure the ability to memorize and type strings
of letters or perform quick arithmetic operations on the fly (ASVABPrepTests, n.d.).

32Different studies use slightly different subtests to construct AFQT scores. Arithmetic reasoning, para-
graph comprehension, and word knowledge are commonly used. However, mathematics knowledge, numerical
operations and coding speed have also been adopted to construct the AFQT (see, among many others, Neal
and Johnson, 1996; Cameron and Heckman, 1998; Heckman and Cameron, 2001; Ellwood, Kane, et al., 2000;
Kautz and Heckman, 2014; Heckman et al., 2006).

33Our EFA approach follows that of Prada and Urzúa (2017), who also find that a two-factor structure
was most appropriate for explaining the variance in ASVAB test scores for men.

34Factor loadings exceeding 0.3 are considered statistically significant (see Diekhoff, 1992; Sheskin, 2004).
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B Robustness Appendix

B.1 Two Stage Least Squares Approach: Additional Instruments

In this subsection, we discuss the construction and identification assumptions of our instru-
ments from Section 4.1.

Routine share instrument. The routine share instrument is modified from Autor and
Dorn (2013). It is constructed as follows:

routine share IVc =
I∑
i=1

Ei,c,1950

∑K
k=1 Li,−c,t1[routinek > routineP66]∑K

k=1 Lk,−c,t
(10)

where i denotes industry, c commuting zone, k occupation, and t year. Ei,c,1950 is the

share of industry i in commuting zone c in 1950. The expression
∑K
k=1 Li,−c,t1[routinek>routineP66]∑K

k=1 Lk,−c,t

calculates the share of occupations in the top third of routine intensity based on the 1980
distribution. We construct predicted manual and abstract occupation shares in parallel ways.

The routine share instrument predicts the RTI share of commuting zone c by isolat-
ing the “long-run, quasi-fixed component” of a commuting zone’s industrial structure that
affects routine share in future decades (Autor and Dorn, 2013). The intuition is that com-
muting zones with high shares of routine industries in 1950 will continue to have high RTI
share in 1960-2000, despite the displacing impact of automation.35 Since the instrument
is constructed from only 1950 characteristics, it pre-dates omitted variables that could in-
fluence employment and education in 1960-2000. The leave-one-out construction nets out
contemporaneous local labor market shocks.

In the first stage regression, we interact the routine share instrument with a matrix of
year dummies to nonparametrically estimate the impact of the instrument on future years.
Since the instrument predicts RTI in a future year, we expect first stage coefficients to be
positive, in contrast to the administrative share instrument, which predicts how RTI will
decline. Appendix Table A.2 column (4) displays the coefficient estimates using the full set
of controls. For a 1 percentage point rise in predicted routine share, RTI share rises by
0.382-0.525 percentage points in 1970-2000, relative to 1960 levels (p < 0.01). Effect sizes
are largest at 0.525 percentage points in 1980 and second largest at 0.474 in 1970, before
slightly diminishing to 0.382-0.393 in 1990-2000. These trends roughly match the raw data
in Figure 5, where RTI share was highest for women in 1970-1980 but steadily declined by
1990-2000 as industries automated. Montiel Olea-Pflueger first stage F-statistics are 42.79,
indicating that the Nagar bias is less than 5% of the worst case benchmark.

Administrative activity and clerical requirement instruments. The administrative
activity and clerical requirement instruments are constructed similarly and use similar iden-
tification assumptions, so we discuss them together. In both cases, we obtain variation at

35All four of our instruments are premised on the notion that automation decreases routine activity over
time, but not to the point where high-routine commuting zones become low-routine commuting zones.
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the commuting zone level by interacting the frequency of mentions in job postings with the
industry share in 1950:

IVct =
I∑
i=1

Ei,c,1950

∑
k∈i

Zkt (11)

where Zkt represents the number of mentions of administrative activity or clerical require-
ments per job posting for occupation k in year t. All other indices are defined as above.

The intuition is that commuting zones with high historic shares of industries intensive in
administrative activity or clerical requirements would experience greater routinization over
time. Appendix Figure A.2 shows the time-series variation exploited by both instruments,
with panel a displaying the change in administrative activity and panel b displaying the
change in clerical requirements. As industries automated over time, mentions of administra-
tive activity or clerical requirements in job postings grew less frequent. The sharpest decline
occurred for office occupations, but notable declines also happened for clerical requirements
among the sales and management occupations. Our instrument predicts greater declines
in RTI share among commuting zones with high historic shares of industries where office,
management, and sales occupations were prevalent.

The identifying assumption for these instruments is similar to the identifying assumption
for the administrative share instrument. The administrative activity or clerical requirements
in an occupation at the national level should only influence enrollment in ways captured by
RTI share at the commuting zone level. That is, local omitted variables that influence both
RTI share and college enrollment should have negligible influence on the administrative
activity or clerical requirements of an occupation at the national level.

Appendix Table A.2 shows the first stage regression estimates in columns (5) and (6).
Point estimates are -3.217 for the administrative activities instrument and -1.460 for the
clerical requirements instrument (p < 0.01). They are larger than the -0.315 to -0.389
estimated using the administrative share instrument, since the units are in terms of mentions
per job posting rather than shares. Our estimates indicate that commuting zones predicted
to have 1 more mention of administrative activity per 100 job postings in 1950 will experience
a 3.22 percentage point greater reduction in RTI share in future years. Commuting zones
predicted to have 1 more mention of clerical requirements per 100 job postings in 1950 will
experience a 1.46 percentage point greater reduction in RTI share in future years. Montiel
Olea-Pflueger F-statistics are 34.25 for the administrative activities instrument and 25.20
for the clerical requirements instrument, indicating that the Nagar bias is less than 10% of
the worst case benchmark.

B.2 Structural Model Identification

Our model identification strategy follows those formally laid out in Carneiro et al. (2003)
and Prada and Urzúa (2017), so we only sketch out the main components below.

We first identify the loading factors that are exclusive to the cognitive skill measures

Cj,i = λcjθc,i + ecj,i, j = 1, 2, 3, 4

We normalize the loading associated with mathematics knowledge to 1 (λc2 = 1) to nonpara-
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metrically identify the other three loading factors {λc1, λc3, λc4}. For example, λc1 =
Cov(Cj ,C1)

Cov(Cj ,C2)
=

λcjλ
c
1var(θc)

λcjλ
c
2var(θc)

=
λc1
λc2

because λc2 has been normalized to be 1. We can then apply Klotarski’s theo-

rem to secure nonparametric identification of the distributions of θc and ecj,i, with j = 1, 2, 3, 4
(Carneiro et al., 2003).

We proceed to summarize how we identify the loading factors in the mechanical skill
measures

Mj,i = λcjθc,i + λmj θm,i + emj,i, j = 5, 6, 7

We specify a linear correlation between θc,i and θm,i:

θm,i = α1θc,i + θ1,i

where θ1 is an additional factor, assumed to be independent of θc. The above mechanical
skill measure equation can be written as

Mj,i = λcjθc,i + λmj θm,i + emj,i
= λcjθc,i + λmj (α1θc,i + θ1,i) + emj,i

= βjθc,i + λmj θ1,i + emj,i

j = 5, 6, 7

where βj = λcj + λmj α1, j = 5, 6, 7. Under this setup, we can decompose the identification
strategy into three steps.

1. Once we identify the variance of cognitive skill var(θc) and the loading factors associ-
ated with the cognitive measures, we can recover βj from Cov(Mj, Cj′) = λcj′βjvar(θc).

2. We normalize mathematics knowledge: λm7 = 1. This secures the identification of the

other factor loadings λm5 and λm6 in the mechanical test score system: λm5 = cov(M5,M6)
cov(M6,M7)

and λm6 = cov(M5,M6)
cov(M5,M7)

. We can then apply Klotarski’s theorem to nonparametrically
identify the distributions of θ1 and emj,i, with j = 5, 6, 7.

3. To identify α1, we assume the factor loading of cognitive skill on automotive shop
information test is 0 (λc5 = 0). This implies that the cognitive factor θc affects the first
mechanical test score M5 only indirectly, through its correlation with the mechanical
factor θm. We can then recover α1 from the equation β5 = λm5 α1.

Identification for the loading factors in the administrative skill equations follow a similar
process. We first impose

θa,i = α2θc,i + θ2,i

where θ2 is an additional factor, assumed to be independent of θc. The administrative
measure equations can be rewritten as follows:

Aj,i = λcjθc,i + λajθa,i + eaj,i
= λcjθc,i + λaj (α2θc,i + θ2,i) + eaj,i

= γjθc,i + λajθ2,i + eaj,i

j = 8, 9

where γj = λcj + λmj α2, j = 8, 9. Finally, we impose the normalization assumptions λc9 =
0, λa9 = 1, where j = 9 denotes the numerical operations subtest.
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C Additional Tables and Figures

Table A.1: Summary Statistics, U.S. Census Data

1960 1970 1980 1990 2000 All years
Female enrollment 0.217 0.348 0.407 0.502 0.529 0.376

(0.00306) (0.00361) (0.00348) (0.00363) (0.00341) (0.00252)

Male enrollment 0.228 0.381 0.313 0.388 0.397 0.305
(0.00377) (0.00404) (0.00337) (0.00390) (0.00363) (0.00214)

RTI share 0.154 0.215 0.179 0.152 0.136 0.161
(0.00136) (0.00170) (0.00153) (0.00125) (0.00117) (0.000741)

Admin share IV 0.298 0.189 0.175 0.180 0.0775 0.228
(0.00180) (0.00133) (0.00132) (0.00105) (0.000452) (0.00189)

Population 565149.2 555278.7 310933.0 340498.1 386447.3 394666.5
(82541.9) (59610.9) (31270.0) (34956.9) (39302.9) (20208.0)

% female 0.502 0.510 0.511 0.511 0.506 0.505
(0.000450) (0.000360) (0.000382) (0.000366) (0.000387) (0.000193)

% black 0.0842 0.0801 0.0760 0.0769 0.0815 0.0808
(0.00497) (0.00425) (0.00431) (0.00430) (0.00445) (0.00187)

% Hispanic 0.0317 0.0326 0.0487 0.0575 0.0800 0.0460
(0.00339) (0.00310) (0.00400) (0.00437) (0.00492) (0.00159)

% ages 18-25 0.0858 0.114 0.129 0.0988 0.0969 0.105
(0.000656) (0.000679) (0.000788) (0.000834) (0.000820) (0.000359)

% ages 25-35 0.117 0.113 0.152 0.156 0.123 0.135
(0.000528) (0.000392) (0.000628) (0.000593) (0.000609) (0.000349)

% ages 35-45 0.123 0.107 0.106 0.143 0.154 0.128
(0.000386) (0.000288) (0.000324) (0.000469) (0.000368) (0.000312)

% ages 45-55 0.111 0.108 0.0961 0.0997 0.134 0.109
(0.000362) (0.000286) (0.000265) (0.000305) (0.000417) (0.000237)

% ages 55-65 0.0864 0.0942 0.0958 0.0892 0.0925 0.0903
(0.000539) (0.000395) (0.000454) (0.000382) (0.000421) (0.000204)

% ages 65 or older 0.0969 0.111 0.126 0.143 0.143 0.117
(0.000943) (0.000934) (0.00110) (0.00110) (0.00106) (0.000530)

Summary statistics for U.S. census sample, 1960-2000. The sample is restricted to individuals who have finished high school or hold a GED.
All summary statistics represent the average across commuting zones. Standard errors in parentheses.
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Table A.2: First Stage Regressions, Additional Specifications

RTI share
(1) (2) (3) (4) (5) (6)

Admin share IV -0.389 -0.382 -0.315
(0.024)∗∗∗ (0.060)∗∗∗ (0.047)∗∗∗

Routine share IV∗2000 0.393
(0.065)∗∗∗

Routine share IV∗1990 0.382
(0.062)∗∗∗

Routine share IV∗1980 0.525
(0.070)∗∗∗

Routine share IV∗1970 0.474
(0.058)∗∗∗

Admin activities IV -3.217
(0.550)∗∗∗

Clerical requirements IV -1.460
(0.291)∗∗∗

Observations 3600 3610 3610 3610 3610 3610
First stage F-statistic 256.985 40.740 45.288 42.788 34.246 25.202
Excluding Boston and NYC Yes
Control for abstract occupation share Yes
RTI share: Non-college workers Yes Yes Yes Yes Yes
RTI share: College and non-college workers Yes
IV: Administrative share Yes Yes Yes
IV: Routine share Yes
IV: Administrative activities Yes
IV: Clerical requirements Yes

First stage regressions, additional specifications. All regressions include demographic controls for the proportion of female, Black, and
Hispanic residents and by 10-year age bin. All regressions also control for U.S. census division, year, commuting zone, labor force
participation, manual occupation share, median cognitive earnings, lagged RTI share, and lagged major industry shares: services,
manufacturing, retail, and mining. Column (1) excludes commuting zones that contain Boston and New York City. Column (2) controls for
abstract occupation share. Column (3) uses the RTI share of all workers, instead of the RTI share of only non-college workers used in the
main specification. Column (4) uses the gender-specific non-college RTI share, rather than pooling men and women. Columns (1)-(4) use
the administrative share IV, while column (5) uses the routine share IV, column (6) the administrative activities IV, and column (7) the
clerical requirements IV. Standard errors are clustered at the two-digit industry level and adjusted using the correction procedure of Adao
et al. (2019). Montiel Olea-Pflueger F-statistics reported using AKM (2019) standard errors. Anderson-Rubin (1949) confidence intervals
reported using the AKM (2019) correction procedure. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A.3: Summary Statistics, NLSY79 Data

Men Women Difference
Mean Std. Dev. Mean Std. Dev. Diff P-value

College by age 25 0.485 0.500 0.609 0.488 -0.123 0.000
Cohort 1 (born 1957-1958) 0.267 0.442 0.254 0.435 0.013 0.300
Cohort 2 (born 1959-1960) 0.225 0.418 0.244 0.430 -0.019 0.105
Cohort 3 (born 1961-1962) 0.253 0.434 0.268 0.443 -0.015 0.222
Cohort 4 (born 1963-1964) 0.247 0.432 0.231 0.422 0.017 0.170
Father completed high school 0.269 0.443 0.269 0.444 -0.001 0.974
Mother completed high school 0.208 0.406 0.21 0.407 -0.003 0.831
Living in urban area at age 14 0.780 0.414 0.779 0.415 0.001 0.938
Living in the South at age 14 0.330 0.470 0.356 0.479 -0.027 0.045
Family income in 1979 11.31 0.935 11.31 0.895 -0.001 0.971
Number of siblings in 1979 3.40 2.394 3.51 2.442 -0.104 0.129

Occupation choices between 25 to 35
White collar 0.074 0.262 0.441 0.497 -0.366 0.000
Blue collar 0.542 0.498 0.093 0.290 0.450 0.000
Pink collar 0.384 0.486 0.467 0.499 -0.083 0.000
Home staying 0.066 0.248 0.200 0.400 -0.134 0.000

Average annual earnings between 25 to 35
White collar 23,579 15,904 15,233 8,969 8346 0.000
Blue collar 14,461 9,075 11,201 6,278 3260 0.000
Pink collar 11,138 7,694 8,119 5,319 3019 0.000

Summary statistics for the NLSY79 sample. The sample is restricted to individuals who have finished high school (12th grade) or hold a
GED degree. Their occupation choice is defined as the modal occupation between ages 25 to 35. College by age 25 is a dummy variable that
equals 1 if the individual’s years of education exceeds 12 by age 25. The sample only includes individuals with complete family background
information and test score information.
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Table A.4: Correlations between Female Workers and Work Type

Year Non-college women and College women and
routine task content abstract task content

1950 0.142∗∗∗ 0.0433∗∗∗

1970 0.129∗∗∗ 0.107∗∗∗

1980 0.0775∗∗∗ 0.117∗∗∗

1990 0.0341∗∗∗ 0.147∗∗∗

2000 0.00420∗∗∗ 0.156∗∗∗

The table presents pairwise correlations of worker type and task intensity. The correlation between non-college female work and routine task
content decreases over time. The correlation between college female work and abstract task content increases over time. ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01.
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Table A.5: Estimates of Wage Coefficients by Occupation and Gender

Men Women
White Blue Pink White Blue Pink

College 0.141 0.011 0.013 0.102 0.152 0.003
(0.001) (0.001) (0.003) (0.002) (0.002) (0.002)

R̂T I -0.200 0.035 -0.212 -0.661 -0.455 1.381
(0.007) (0.008) (0.018) (0.009) (0.017) (0.017)

Cognitive 0.119 -0.037 0.105 0.119 0.259 -0.045
(0.004) (0.001) (0.006) (0.004) (0.003) (0.003)

Cognitive*college 0.062 -0.173 -0.032 0.007 -0.149 0.076
(0.004) (0.002) (0.006) (0.004) (0.005) (0.004)

Cognitive*R̂T I 0.105 0.242 0.043 0.657 -0.414 -0.012
(0.022) (0.007) (0.030) (0.019) (0.019) (0.016)

Cognitive*college*R̂T I -0.006 -0.033 -0.008 -0.026 0.002 -0.008
(0.022) (0.010) (0.032) (0.020) (0.029) (0.018)

Manual -0.037 0.088 -0.058 -0.123 -0.138 -0.103
(0.003) (0.003) (0.009) (0.007) (0.019) (0.009)

Manual*college -0.001 0.126 0.008 0.083 -0.112 -0.286
(0.003) (0.002) (0.007) (0.007) (0.029) (0.011)

Manual*R̂T I -0.071 -0.191 -0.215 -0.561 0.320 0.375
(0.019) (0.013) (0.048) (0.035) (0.106) (0.046)

Manual*college*R̂T I -0.014 -0.004 0.022 -0.012 -0.041 -0.092
(0.016) (0.013) (0.044) (0.035) (0.158) (0.054)

Admin 0.246 0.128 0.216 -0.311 -0.094 0.131
(0.014) (0.008) (0.025) (0.023) (0.043) (0.015)

Admin*college -0.103 0.065 -0.190 -0.182 0.072 -0.197
(0.011) (0.009) (0.023) (0.023) (0.051) (0.018)

Admin*R̂T I 0.133 0.098 0.030 -0.144 0.273 0.251
(0.078) (0.041) (0.142) (0.134) (0.238) (0.081)

Admin*college*R̂T I 0.031 -0.020 0.001 0.127 0.061 0.018
(0.068) (0.050) (0.121) (0.130) (0.309) (0.098)

Constant 1.940 1.776 1.655 1.892 1.657 1.057
(0.001) (0.001) (0.002) (0.002) (0.001) (0.003)

Standard deviation 0.457 0.411 0.475 0.409 0.452 0.444
(0.001) (0.001) (0.002) (0.001) (0.002) (0.001)

Parameter estimates for the wage coefficients in Equation 4, reported by occupation and gender. Standard errors in parentheses.
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Table A.6: Estimates for Utility Parameters by Occupation and Gender

Men Women
White Blue Pink White Blue Pink

College 0.478 -0.904 0.419 0.890 -1.001 -0.493
(0.011) (0.009) (0.020) (0.012) (0.016) (0.011)

R̂T I 0.148 0.535 0.167 -6.689 -3.194 5.267
(0.204) (0.164) (0.276) (0.198) (0.355) (0.188)

Cognitive 0.479 -0.053 0.335 1.162 0.573 0.398
(0.052) (0.024) (0.063) (0.041) (0.057) (0.022)

Cognitive*college 0.531 0.987 0.564 0.560 -0.350 -0.288
(0.057) (0.031) (0.089) (0.042) (0.080) (0.031)

Cognitive*R̂T I -0.839 0.838 -0.449 -8.097 -2.628 9.567
(0.289) (0.127) (0.347) (0.222) (0.308) (0.111)

Cognitive*college*R̂T I 0.030 -0.003 -0.012 3.976 -0.006 -4.103
(0.312) (0.164) (0.484) (0.229) (0.428) (0.159)

Manual -0.001 0.497 -0.175 -0.726 -0.186 -0.629
(0.059) (0.035) (0.095) (0.081) (0.155) (0.063)

Manual*college -1.094 -0.413 -0.217 0.154 1.596 0.537
(0.062) (0.039) (0.123) (0.076) (0.219) (0.080)

Manual*R̂T I -1.094 0.298 -0.608 1.193 0.559 -0.174
(0.330) (0.186) (0.518) (0.427) (0.858) (0.323)

Manual*college*R̂T I -0.005 0.013 0.016 -0.009 -0.023 0.000
(0.345) (0.202) (0.664) (0.407) (1.179) (0.413)

Admin 0.358 -0.073 0.015 0.735 -0.208 -0.087
(0.220) (0.134) (0.306) (0.262) (0.450) (0.190)

Admin*college -0.508 0.109 -0.320 1.107 -0.674 0.212
(0.176) (0.125) (0.242) (0.211) (0.405) (0.128)

Admin*R̂T I 0.041 0.117 -0.442 -4.632 -0.801 6.643
(1.223) (0.702) (1.706) (1.430) (2.503) (1.012)

Admin*college*R̂T I 0.010 -0.010 -0.042 -0.612 -0.100 0.830
(0.967) (0.654) (1.342) (1.128) (2.351) (0.678)

Constant -6.304 -4.497 -5.647 -5.377 -5.572 -4.852
(0.037) (0.031) (0.047) (0.039) (0.066) (0.036)

Parameter estimates for the non-pecuniary utility coefficients in Equation 5, reported by occupation and gender. Standard errors in paren-
theses.
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Table A.7: Estimates for the Education Equation by Gender

Men Women
Estimate Std. Error Estimate Std. Error

Cognitive 1.18 0.37 1.11 0.38
Manual -0.39 0.39 -0.22 0.39
Admin 0.16 1.49 0.17 1.64
Cohort 2 -0.15 0.13 -0.20 0.12
Cohort 3 0.00 0.13 0.15 0.11
Cohort 4 -0.02 0.14 0.25 0.14
Father’s education 0.85 0.17 0.34 0.15
Mother’s education 0.25 0.13 0.80 0.29
Urban 0.39 0.13 0.19 0.11
South 0.38 0.14 0.21 0.13
Intact family 0.48 0.04 0.15 0.03
Number of siblings -0.03 0.01 0.00 0.01
Constant -5.28 0.67 -1.51 0.62
Standard deviation 0.85 0.19 0.71 0.41

Parameter estimates for the education decision in Equation 6 are reported in columns (1) and (3) for men and women, respectively. Columns
(2) and (4) report the associated standard errors.
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Table A.8: Parameters for Skill Distributions and Measurement Equations

Skill distribution Measurement equation
Men Women Loadings Std. Dev.
(1) (2) (3) (4)

µcog -0.003 0.068 λm1 1.552 σc,1 0.465
(0.051) (0.088) (0.046) (0.023)

µmanual 0.296 -0.271 λc2 0.565 σc,2 0.527
(0.038) (0.023) (0.015) (0.016)

µadmin -0.194 0.160 λm2 0.929 σc,3 0.540
(0.022) (0.024) (0.027) (0.016)

σ
(1)
cog 0.800 0.745 λc3 0.505 σc,4 0.479

(0.090) (0.126) (0.016) (0.016)

σ
(1)
manual 0.336 0.335 λc4 1.064 σm,5 0.502

(0.091) (0.101) (0.021) (0.017)

σ
(1)
admin 0.191 0.111 λc6 0.998 σm,6 0.557

(0.084) (0.143) (0.020) (0.016)

σ
(2)
cog 0.556 0.324 λc7 0.936 σm,7 0.619

(0.082) (0.135) (0.019) (0.017)

σ
(2)
manual 0.398 0.108 λc8 0.815 σa,8 0.699

(0.091) (0.121) (0.024) (0.028)

σ
(2)
admin 0.117 0.117 λa9 0.945 σa,9 0.953

(0.090) (0.132) (0.136) (0.027)
The left panel, “Skill distribution”, reports the distribution of skills by gender. Each skill is a mixture of two normal distributions. µcog
denotes the mean of the first normal distribution for cognitive skill. The mean of the second normal distribution is pre-determined to be 0.

σ
(1)
cog reports the standard deviation of the first normal distribution for cognitive skill and σ

(2)
cog reports the standard deviation of the second

normal distribution for cognitive skill. µmanual denotes the mean of the first normal distribution for manual skill. The mean of the second

normal distribution is pre-determined to be 0. σ
(1)
manual

reports the standard deviation of the first normal distribution for manual skill and

σ
(2)
manual

reports the standard deviation of the second normal distribution for manual skill. µadmin denotes the mean of the first normal

distribution for administrative skill. The mean of the second normal distribution is pre-determined to be 0. σ
(1)
admin

reports the standard

deviation of the first normal distribution for administrative skill and σ
(2)
admin

reports the standard deviation of the second normal distribution
for administrative skill. The right panel, “Measurement Equation” reports the estimates of the loading factors associated with Equation 7 in
column (3). It reports the standard deviation of the residual term in each test score measurement equation in column (4). Standard errors
in parentheses.
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Figure A.1: Administrative Share Instrument Predicts Automation Intensity

Raw correlation between administrative share IV and future automation intensity, as measured by change in personal computers in 1980-1990. The solid line shows the

correlation estimated from an OLS regression using labor supply weights. The shaded gray area depicts 95% confidence intervals. Data from the U.S. census, Autor and Dorn

(2013), and Atalay et al. (2020).

Figure A.2: Administrative Activities and Clerical Requirements by Major Occupation Group

(a) Administrative activities (b) Clerical requirements

Frequency with which administrative activities (a) and clerical requirements (b) are mentioned per job posting. Data from the U.S. census and Atalay et al. (2020).
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